基于细观力学建模分析卡车载荷下柔性路面的非线性行为

Posted · Add Comment

沥青路面会出现诸如车辙、膨胀、推挤、开裂和坑洼等各种问题。准确评估卡车载荷对道路结构的影响,需要对产生的应力和应变进行深入分析。本研究开发了一个预测柔性路面行为的动态模型,不仅考虑到沥青层效应,还能准确表征路面结构内的所有层。将基于 Kelvin 粘弹性模型的用户自定义材料子程序(UMAT)集成到 ABAQUS 软件进行非线性粘弹性分析,结合由 Simpleware 软件基于真实扫描数据创建沥青混凝土结构的模拟与实验结果验证,比较 Simpleware 软件与 ABAQUS 生成网格模型质量对模拟精确度的影响。

通过生成对抗网络为异质和拓扑复杂的 3D 材料创建微观结构

Posted · Add Comment

本研究采用由 Xe 等离子聚焦离子束扫描电子显微镜(Xe PFIB-SEM)获取的大尺寸 3D 微观结构数据集,通过生成对抗网络(GAN)框架学习和生成固体氧化物燃料电池电极的 3D 微观结构。利用有限元分析进行电化学性能模拟,并与基于晶粒的生成算法(DREAM3D)进行对比。机器学习模型能够以高保真度重建微观结构,使其成为 ICME 工具集中有价值的补充。

ReaxFF力场、机器学习势、DFTB参数训练工具 ParAMS 正式发布

Posted · Add Comment

多尺度全功能的材料与化学模拟平台 AMS AMS 是一款历史悠久而又迅速发展的多尺度全功能的材料与化学模拟平台,目前包括以下功能与应用: 分子体系的量子化学计算:化学反应机理研究、丰富的光谱性质预测、发光、热力学性质、化学键的机理研究、重元素配合物与团簇、多金属氧酸盐、分子构象搜索等 晶体、低维材料:吸附、表面催化、单原子催化、化学反应机理、磁性质、材料电子学性质、化学键的机理研究、力学性能、热力学性质、光的吸收与折射等 介观体系:基于经典力场、反应力场、机器学习势、半经验量子化学方法的分子动力学与蒙特卡洛模拟,被广泛地应用于化学反应机理与预测研究,以及微细加工、燃烧、热解、催化,以及半导体、聚合物物性的研究 宏观物质:离子液体、溶液、气液平衡、液液平衡、共晶、低共熔溶剂等,采用UNIFAC、COSMO-RS/SAC/UNIFAC等方法进行研究,广泛应用于化工、制药领域的研究 更接近实验、工业研究实际:微观动力学、动力学蒙特卡洛 进一步了解,请参考 AMS 的详细介绍(链接)。 ReaxFF力场、机器学习势、DFTB参数的训练工具 AMS 最近几年在参数训练方面发展迅速,AMS2024 版的 ParAMS 功能已经完善,支持导入 ADF、BAND、Quantum Espresso 生成的 DFT 训练集,并方便地从作业中生成键长、能量、电荷、力、Hessian、应力张量、频率、势能面扫描数据,丰富训练集、验证集,甚至可以导入实验数据作为训练集。不仅仅支持训练 ReaxFF 力场,训练 DFTB 的GFN1-xTB、机器学习势 M3GNet 与 NequIP、Lennard Jones 势也大同小异。 训练方法包括:CMAES、Adaptive Rate Monte Carlo、Nevergrad、Scipy、Random Sampling、Grid Sampling。 在训练时,训练集的权重,对训练质量有非常强的影响,ParAMS 能够通过参数敏感度的计算,便于用户衡量需要优化的力场参数、以及训练集的权重。 目前我们提供了完善的训练教程,通过不同的训练方式,展示参数训练时的各方面的功能。 ParAMS 训练的工作思路 使用 DFT 方法,计算相关的体系的各种键长、键角等不同结构下的情况,包括能量、原子电荷、力等,导入 ParAMS 中,作为参考数据,俗称训练集,或者参考集。用户设定好一个初始力场,然后就可以使用 ParAMS 的训练算法,对力场进行训练,得到不同的力场。最终得到一个所谓损失函数最小的力场,就是最佳结果。损失函数用来描述使用力场计算这些体系,与 DFT 计算这些体系,二者之间的差异,差异越小表示力场越优秀。 在训练前,用户也可以根据自己的理解,选择力场中需要训练的参数,并通过 ParAMS 计算一个叫做敏感性的数值。这个数值描述力场参数跟训练集的相关性程度,用户训练时,可以只训练敏感性比较大的参数,敏感度非常小的参数,可以忽略掉,不去训练。并且真正训练时,也可以先训练敏感度最大的少数参数,收敛后固定这些参数,再去训练敏感度稍小一些的参数,这样能够更高效地得到一个优质的力场。 […]

清华大学胡憾石、李隽课题组Inorg. Chem. |理论研究揭示二维富勒烯单层的电子结构和化学键

Posted · Add Comment

AdNDP轨道、超原子分子轨道(SAMOs)和NOCV轨道作用揭示二维富勒烯单层的电子结构和稳定性 研究背景 自从富勒烯C60被合成以来,富勒烯及其衍生物展现出令人瞩目的化学和物理性质。富勒烯是一种具有Ih对称性的二十面体结构,由20个六边形和12个五边形组成。这种独特的几何结构使它们与传统的纯碳材料如二维的石墨烯和三维的金刚石等材料截然不同。除了单个富勒烯分子外,以C60富勒烯为基本结构单元组装而成的各种碳材料也相继被合成。由于富勒烯封闭的笼状二十面体结构,富勒烯分子也具有很高的稳定性。所以在富勒烯材料中,C60分子之间难以形成强的化学键,主要依靠分子间的范德华(van der Waals)相互作用。例如,面心立方富勒烯晶体(fcc C60)已在室温下被合成,C60质心之间的距离为10.02 Å,其主要作用力为较弱的范德华力。 近年来,具有分子间化学键的富勒烯材料也被科学家们陆续发现。例如,通过[2 + 2]环加成键连接的六方相富勒烯(rhombohedral phase),以及在高温高压下合成的四方相富勒烯(tetragonal phase)等富勒烯固体材料。此外,研究表明,碱金属和碱土金属掺杂可以促进C60聚合物晶体的形成。这些掺杂的富勒烯聚合物展现出丰富的电子性能,有的甚至表现出超导现象。 最近,中科院化学所郑健课题组通过有机阳离子切片策略成功合成了二维单层准六方相富勒烯(qHPC60)和单层准四方相富勒烯(qTPC60)。在二维六方相富勒烯单层中,每个富勒烯被6个相邻的富勒烯碳笼包围,碳笼之间通过碳-碳单键和[2+2]环加成键连接。这种单层富勒烯聚合物的带隙为1.6 eV,具有优异的热力学稳定性,同时表现出优异的光学各向异性、机械性能和热电特性等。此后,关于二维富勒烯材料的实验和理论研究陆续大量报道,但对于这种材料的电子结构与其稳定性的深入探究仍有待进一步明确。 论文详情 清华大学化学系胡憾石、李隽团队采用密度泛函理论方法,通过研究二维富勒烯单层的电子结构和化学键来探讨其稳定性机制。理论计算表明,二维富勒烯单层具有1.46 eV 的直接电子带隙,与实验值(1.6 eV)吻合。研究发现,富勒烯分子间碳-碳键的形成对促进C60之间的电荷流动起着关键作用,使得 C60球内形成双重π芳香性,从而稳定了二维骨架结构。此外,研究还发现二维富勒烯单层内一系列离域的超原子分子轨道(SAMO)。这些轨道表现出类似原子轨道的行为,并杂化形成具有σ/π成键和σ*/π*反键性质的近自由电子带。本研究为理解二维富勒烯单层的电子结构和稳定机制提供了新的见解,对基于SAMO的近自由电子带的二维富勒烯材料的设计和潜在应用提供了理论指导。 该研究成果以“Understanding the Electronic Structure and Chemical Bonding in the 2D Fullerene Monolayer”为题,发表于Inorganic Chemistry期刊。南方科技大学博士后赵晓昆为本文第一作者,清华大学化学系胡憾石和李隽为本文通讯作者。 研究内容 1,二维富勒烯材料的结构和稳定性探究 Figure 1.二维富勒烯材料的结构,(a)俯视图;(b)侧视图。C1,C1′和C2分别代表[2+2]环加成键中的碳原子;C3和C3′分别代表分子间碳-碳单键中的碳原子。 在二维富勒烯材料中,由于C60分子间碳-碳键的形成,导致其内部的C60分子结构发生了扭曲,从Ih对称性降低到了C2h对称性。同时,C60分子内的“56”键和“66”键长的范围分别为1.377-1.610 Å和1.358-1.505 Å;而在原始的C60分子中“56”键和“66”键长分别为1.452和1.397 Å。此外,C60分子间[2+2]环加成键(C1-C1′)和碳碳单键(C3-C3′)的长度均为1.606 Å。对该二维富勒烯材料内部的碳-碳键强度的分析表明,分子间碳-碳键的强度(~ -7.9 eV)要明显小于C60分子内部的碳-碳键强(> -11.2 eV)。对不同温度下(分别为600 K、1000 K、1400 K和1800 K)下时长30 ps 的AIMD模拟结果表明,该材料在1400 K以上仍具有良好的热力学稳定性。然而,在1800 K时,该材料在10 ps的AIMD模拟后会分解成单个的C60分子。 2,二维富勒烯材料的芳香性探究 […]

通过基于 X 射线 Micro CT 图像的三维孔隙模型对硬化水泥浆体电阻率进行数值评估

Posted · Add Comment

概述 耐腐蚀性能对于钢筋混凝土结构的耐久性至关重要。特别地,抗氯离子侵蚀性能主要与保护混凝土的电阻率(ER)有关。计算电阻率时要考虑的电导池常数由理论获得,在大多数情况下为 2πa,但应根据测试条件进行修改。本研究基于 X 射线Micro CT图像创建三维孔隙模型,模拟多孔水泥基体中连通孔隙内离子传导引起的电流流动,并将数值模拟评估与传统 Wenner 法测量结果进行比较。 实验 圆柱形混凝土试样直径 100 mm,高 200 mm,水灰比为 0.65。使用比重为 3.16 g/cm3 的普通硅酸盐水泥,在 20°C 的室温下养护 28 天。对尺寸为 2 mm 的硬化水泥浆体小试样进行 X 射线 CT 扫描。 表1:混凝土拌合物的配合比 在测试试样前,将其浸入水箱并在真空条件下完全饱和。采用 Wenner 四极法测量电阻率,考虑到修正电导池常数取决于试样的几何形状,将电阻率的结果转换为材料特性。通过阿基米德法测量混凝土试样的孔隙率,使用压汞法测量小试样的孔隙率。 模拟 将 CT 扫描获得的图像数据导入 Simpleware 软件,基于阈值分割为硬化水泥浆体和孔隙两个区域,分界线根据压汞法和阿基米德法测得的孔隙率确定。 图1:灰度像素值直方图和 3D 孔隙结构模型 在 Simpleware FE 模块生成高质量的四面体网格模型,导出至 COMSOL 软件进行数值模拟。在 X 方向施加电位差,计算 X 方向每个平面上观察到电流密度的面积分,从而得到流过多孔介质的平均电流 I。绝缘平面的边界条件设定为诺伊曼条件,根据稳态模拟结果可根据电位 V 和电流 I 得到电阻率 R。 为确认结果各向同性的一致性,在 X、Y、Z 方向上均进行计算。值得注意的是,液相中的电导率很大程度上取决于孔隙溶液中的离子浓度和迁移率,满足电中性的要求。电流通过离子传导在硬化混凝土中流动,在模拟中假设其是完全饱和的。 […]

 
  • 双离子型重氮族亚胺在氧化还原催化中的突破一、研究背景 过渡金属因其可变价和d轨道特性长期主导氧化还原催化,而主族元素因缺乏d轨道,一度被认为活性有限。但近年研究发现,15族元素(Pn = P As Sb Bi)的低价化合物,尤其是锑和铋,凭借孤对电子的特殊性质,也能表现出类似过渡金属的反应模式。已有低价重氮族化合物虽能实现小分子活化,却受限于配体刚性大、可调性不足、副反应较多,难以进一步拓展。为解决这一问题,英国帝国理工学院、伦敦玛丽女王大学与德国萨尔大学团队合作,设计了一类前所未有的双离子型(zwitterionic)重氮族化合物。其核心创新在于引入双 (NHC) 硼酸盐配体,既带有阴离子电荷,又具强 σ [...]
  • 低维电子材料与器件合集(四)电场和应变作用下 MoSSe/Borophene 异质结的可调谐肖特基势垒 通过第一性原理计算研究 Janus MoSSe/Borophene 异质结的电子性质。不同硼烯结构的 MoSSe/Borophene 异质结表现出不同的电子性质。所有异质结均呈现 p 型肖特基接触,电场和应变可以调制 MoSSe/Borophene 异质结的电子特性。随着外加电场的变化,带隙也会发生变化,从而实现欧姆接触。此外,应变引起 Janus MoSSe 从直接带隙到间接的带隙跃迁和接触类型的改变。结果表明,Janus MoSSe/Borophene 异质结的可调电子特性使其成为一种很有前途的电子器件候选材料。(Chemical Physics 2024 576: [...]
  • 锌离子导电 MOF 界面层助力高稳定性水系锌电池研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo [...]
  • 基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •