清华大学胡憾石、李隽课题组Inorg. Chem. |理论研究揭示二维富勒烯单层的电子结构和化学键

Posted · Add Comment

AdNDP轨道、超原子分子轨道(SAMOs)和NOCV轨道作用揭示二维富勒烯单层的电子结构和稳定性 研究背景 自从富勒烯C60被合成以来,富勒烯及其衍生物展现出令人瞩目的化学和物理性质。富勒烯是一种具有Ih对称性的二十面体结构,由20个六边形和12个五边形组成。这种独特的几何结构使它们与传统的纯碳材料如二维的石墨烯和三维的金刚石等材料截然不同。除了单个富勒烯分子外,以C60富勒烯为基本结构单元组装而成的各种碳材料也相继被合成。由于富勒烯封闭的笼状二十面体结构,富勒烯分子也具有很高的稳定性。所以在富勒烯材料中,C60分子之间难以形成强的化学键,主要依靠分子间的范德华(van der Waals)相互作用。例如,面心立方富勒烯晶体(fcc C60)已在室温下被合成,C60质心之间的距离为10.02 Å,其主要作用力为较弱的范德华力。 近年来,具有分子间化学键的富勒烯材料也被科学家们陆续发现。例如,通过[2 + 2]环加成键连接的六方相富勒烯(rhombohedral phase),以及在高温高压下合成的四方相富勒烯(tetragonal phase)等富勒烯固体材料。此外,研究表明,碱金属和碱土金属掺杂可以促进C60聚合物晶体的形成。这些掺杂的富勒烯聚合物展现出丰富的电子性能,有的甚至表现出超导现象。 最近,中科院化学所郑健课题组通过有机阳离子切片策略成功合成了二维单层准六方相富勒烯(qHPC60)和单层准四方相富勒烯(qTPC60)。在二维六方相富勒烯单层中,每个富勒烯被6个相邻的富勒烯碳笼包围,碳笼之间通过碳-碳单键和[2+2]环加成键连接。这种单层富勒烯聚合物的带隙为1.6 eV,具有优异的热力学稳定性,同时表现出优异的光学各向异性、机械性能和热电特性等。此后,关于二维富勒烯材料的实验和理论研究陆续大量报道,但对于这种材料的电子结构与其稳定性的深入探究仍有待进一步明确。 论文详情 清华大学化学系胡憾石、李隽团队采用密度泛函理论方法,通过研究二维富勒烯单层的电子结构和化学键来探讨其稳定性机制。理论计算表明,二维富勒烯单层具有1.46 eV 的直接电子带隙,与实验值(1.6 eV)吻合。研究发现,富勒烯分子间碳-碳键的形成对促进C60之间的电荷流动起着关键作用,使得 C60球内形成双重π芳香性,从而稳定了二维骨架结构。此外,研究还发现二维富勒烯单层内一系列离域的超原子分子轨道(SAMO)。这些轨道表现出类似原子轨道的行为,并杂化形成具有σ/π成键和σ*/π*反键性质的近自由电子带。本研究为理解二维富勒烯单层的电子结构和稳定机制提供了新的见解,对基于SAMO的近自由电子带的二维富勒烯材料的设计和潜在应用提供了理论指导。 该研究成果以“Understanding the Electronic Structure and Chemical Bonding in the 2D Fullerene Monolayer”为题,发表于Inorganic Chemistry期刊。南方科技大学博士后赵晓昆为本文第一作者,清华大学化学系胡憾石和李隽为本文通讯作者。 研究内容 1,二维富勒烯材料的结构和稳定性探究 Figure 1.二维富勒烯材料的结构,(a)俯视图;(b)侧视图。C1,C1′和C2分别代表[2+2]环加成键中的碳原子;C3和C3′分别代表分子间碳-碳单键中的碳原子。 在二维富勒烯材料中,由于C60分子间碳-碳键的形成,导致其内部的C60分子结构发生了扭曲,从Ih对称性降低到了C2h对称性。同时,C60分子内的“56”键和“66”键长的范围分别为1.377-1.610 Å和1.358-1.505 Å;而在原始的C60分子中“56”键和“66”键长分别为1.452和1.397 Å。此外,C60分子间[2+2]环加成键(C1-C1′)和碳碳单键(C3-C3′)的长度均为1.606 Å。对该二维富勒烯材料内部的碳-碳键强度的分析表明,分子间碳-碳键的强度(~ -7.9 eV)要明显小于C60分子内部的碳-碳键强(> -11.2 eV)。对不同温度下(分别为600 K、1000 K、1400 K和1800 K)下时长30 ps 的AIMD模拟结果表明,该材料在1400 K以上仍具有良好的热力学稳定性。然而,在1800 K时,该材料在10 ps的AIMD模拟后会分解成单个的C60分子。 2,二维富勒烯材料的芳香性探究 […]

LaFe(11.5-x)MnxSi1.5 化合物中 Mn 掺杂引起磁变化的起源(SCRIPTA MATER 2024)

Posted · Add Comment

传统的气体压缩式制冷技术由于能耗大、效率低、环境不友好等问题急需进行变革,而磁制冷技术作为一种基于磁热效应的新型固态制冷技术,有望解决传统制冷技术面临的一系列问题。近年来,La(Fe,Si)13金属间化合物(结构如图1)由于其在一阶相变过程中的巨磁热效应,成为最有前途的室温磁制冷材料之一。然而,一阶相变伴随的热滞和磁滞会导致制冷效率的降低。因此,科研人员致力于通过掺杂来解决这一问题。

新的低成本 Meta-GGA 泛函计算获得正确带隙(Phys Rev Mater. 2023)

Posted · Add Comment

摘要 对于新材料的发现,准确快速地预测带隙非常重要,密度泛函 LDA 和 GGA 虽然效率很高,但是系统性地倾向于低估带隙,其根本原因在于忽略了 ∆xc 导数的不连续性问题。带隙的可靠预测,通常需要求助于计算上更昂贵的杂化泛函,或超越 DFT 方法如 GW 计算。不过对材料筛选或大型复杂体系,这些方法通常在时间成本上无法承受。 最近的一项研究中,研究人员发现 Meta-GGA 中的 TASK 泛函[1](AMS2023 以后的版本包含该泛函)可以相当好地兼顾精度和计算速度[2]。Kohn-Sham 和广义 Kohn-Sam 计算结果比较表明, TASK 来自正确的理论,即,适当结合 Kohn Sham 间隙 ∆KS 和 ∆xc 导数不连续性的贡献,能够得到正确的带隙。即使对于卤化物钙钛矿等复杂材料,TASK 也预测出类似于混合 HSE[3] 的带隙,但值得注意的是,TASK 的效率却不是 HSE 能比的。在其他设置相同的情况下进行带隙计算,数值稳定的 Meta-GGA TASK 的效率通常是 GGA 的1/3,但比杂化泛函快 20-30 倍。 Meta-GGA TASK 可直接在 AMS 中的 Libxc 中调用。另外,与其他 Meta-GGA 不同,TASK 对原子径向网格的密度要求比其他 Meta-GGA 低。此外,虽然带隙通常使用广义 Kohn-Sham 计算,但 […]

Mn 掺杂 MoS2 纳米片改善析氢性能的 DFT QTAIM 计算分析(Materials Today Comm. 2024)

Posted · Add Comment

摘要 在最近的一篇实验和理论相结合的文章中,基于周期性 DFT 计算与 QTAIM 分析,在原子水平上解释了当MoS2 二维材料掺杂 Mn 时,其析氢反应(HER)性能增强的原因。该工作使用 AMS 软件中的 BAND 模块,进行周期性DFT与QTAIM计算表明,将 Mn 原子掺入 MoS2 纳米片的基面,会激活所有面内 S 原子位点和与 Mn 相邻的三个 Mo 原子,从而降低 H 原子的吸附自由能,从而提高表面的 HER 催化活性(参考原文图 6)。DFT-QTAIM 计算与 Mn-MoS2 增强 HER 性能的实验数据非常一致。 为了探索掺杂对局部(接近掺杂原子)和全局的影响,计算模型选取了 32 个 H 原子全面覆盖的超胞,每个对称等价的 S 原子(总共16个)的顶部有 1 个 H 原子,另外 16 个 H 原子位于 Mo 的顶部位置(参考原文图 7)。根据 QTAIM 分析,原始的 MoS2 单层的 […]

氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附的DFT模拟(Surfaces and Interfaces. 2023)

Posted · Add Comment

近日,南京工业大学的杨晓宁教授团队在国际期刊Surfaces and Interfaces发表了一篇题为DFT simulation of structure stability and nitrogen oxide adsorption for nitrogen and oxygen co-modified carbon nanotubes的文章,使用DFT研究了氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附。 摘要: 氮(N)和氧(O)共修饰碳纳米管(ON-CNTs)在吸附和催化过程中具有潜在的应用前景,因为含氧基团和N掺杂原子可以提供丰富的表面结合位点。然而,它们在不同共改性水平下的结构稳定性和吸附相互作用仍有待探索。作者首次采用密度泛函理论方法定量表征了一系列ON-CNTs的结构形貌和热力学稳定性。对ON-CNTs与氮氧化物(NO和NO2)之间的相互作用能和电子机制进行了全面调查。该仿真结果对改性碳纳米管的设计和应用具有重要价值。 计算方法: 本研究中所有的DFT计算均使用AMS软件的BAND模块。基于广义梯度近似(GGA)的Becke-Perdew (BP86)泛函与Grimme等引入的经验弥散校正(-D3),用于所有ON-CNTs的几何优化和单点计算。所有的计算都是在真空中使用TZP基组进行的。在几何优化中,能量收敛为10-5 Hartree,能量梯度收敛为10-3 Hartree/Å,步长收敛为10-3 Å。 图1. 三种典型的ON-CNTs的静电势图(ESP) 作者模拟了ON -CNTs的表面静电势(ESP),这是表征表面相互作用位点的重要特性。如图1所示,ON -CNTs表面骨架的ESPs以正为主,负ESP值一般在官能团氧原子附近,而官能团的H原子表现出正ESP值。随着共修饰程度的增加,掺杂N原子的存在可以更积极地增强表面ESP。因此,共修饰对ON-CNT电荷分布有影响,为与外部分子的吸附提供了多个相互作用的位点。 图2. NO分子在ON-CNTs表明的AIM和NCI分析 为了理解NO/NO2分子与ON-CNTs结构之间的相互作用机制,作者采用了AIM和NCI方法分析了几种典型吸附配合物之间的相互作用,如图2所示。NO分子与CNT-N20O30表面结合时,存在着非共价相互作用和共价键共存的丰富而复杂的相互作用模式。随着N和O共改性水平的提高,NO与ON-CNTs之间的相互作用增强,同时吸附状态可以由物理吸附转变为化学吸附。 图3. 三种典型吸附配合物的投影态密度分析(PDOS) 图3显示了具有最强吸附位点的三种典型NO/ ON-CNTs吸附配合物的投影态密度(PDOS)。与分离的NO分子相比,吸附在CNT-N10O10上的NO分子的2P轨道峰在费米能级附近减小(图3a)。同时,在0.12 eV时,CNT-N10O10分子与NO分子之间的轨道仅出现轻微重叠,说明NO/CNT-N10O10体系内部的相互作用较弱,这与吸附体系中唯一的vdW相互作用一致。NO/CNT-N20O20内部的相互作用(图3b)对NO分子的PDOS有显著影响。NO分子被吸附后,原费米能级附近的2P轨道峰消失,在- 1.51 eV和1.55 eV处出现新的峰,分别与H116和H111的S轨道有明显重叠,导致CNT-N20O20与NO分子发生强结合。这也解释了CNT-N20O20体系中强烈的非共价相互作用。 图4. 两种气体分子对T和P的吸附自由能(ΔG)二维图 图4为两种气体分子对T和P的吸附自由能(ΔG)二维图。随着T的减小和P的增大,吸附自由能呈下降趋势。改性碳纳米管表面对氮氧化物气体的吸附是热力学自发的,在实际条件下是有利的。 总结: 本文利用AMS软件的BAND模块,进行了氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附的DFT模拟研究。研究发现,当N掺杂浓度低于30%,氧化水平低于50%时,ON-CNTs一般可以保持稳定的形貌,而不会出现明显的结构破坏。表面氧化程度是决定相互作用的主要因素,氧化程度在20 ~ 40%时可以产生强相互作用能。与NO2分子相比,NO分子与ON-CNTs的表面相互作用更大。电子水平的AIM、NCI和PDOS分析进一步揭示了各种相互作用机制。NO分子与ON-CNTs之间的强相互作用主要归因于化学共价相互作用。NO2分子的相互作用是由HB和vdW机制驱动的。进一步的吸附自由能结果表明,共改性碳纳米管表面对氮氧化物气体的吸附是热力学自发的,在实际条件下是有利的,使其成为一种有前途的氮氧化物捕获纳米材料。该模拟结果不仅揭示了表面相互作用的机理,而且为ON-CNTs的设计提供了指导和应用潜力。 参考文献: Yan Chen, Jintao Han, Xiaoning Yang, DFT simulation of structure […]

非金属原子嵌入二维 GaN 双层中的半金属性研究(Appl. Phys. Lett. 2023)

Posted · Add Comment

摘要 半金属材料是高效自旋电子器件的理想工质。常见的半金属材料大多含有过渡族金属,局域的d或f电子使其可能不适合未来的自旋电子学应用(如基于碳和有机分子的生物相容性电子器件和设备)。为了克服这一问题,人们提出了无过渡族金属的p轨道半金属材料,但是这些材料的制备往往需要严苛的条件,例如强外场或高载流子掺杂。南京大学陆海鸣副教授课题组与伊犁师范大学黄以能教授合作,采用第一性原理计算发现F插层的GaN双层(F-Ga2N2)是一种不受插层原子浓度影响的p轨道半金属材料,且其半金属性在双轴应变-10%~10%时都可稳定存在。该研究成果为未来自旋电子学应用提供了一种设计无过渡金属的半金属材料的新策略。 图1、F-Ga2N2的(a)几何构型、(b)PBE计算得到的能带图和(c)总态密度和分波态密度 通过第一性原理计算,作者发现F原子倾向于插层在上下两层Ga原子的中间(图1a),从能带图(图1b)可以看出自旋向上部分具有较大的带隙而自旋向下部分则是越过了费米面,因此F-Ga2N2呈现出了半金属性质,且半金属带隙高达0.688 eV。此处能带、态密度的计算,参考中文教程:https://www.fermitech.com.cn/wiki/doku.php?id=adf:halfmetallicity 结合分波态密度图(图1c)可以看出该材料的半金属性主要来自于N原子的p轨道,这可以解释为:F原子的插层弱化了Ga原子和N原子间的键合,增加了N原子的p轨道能量,从而使得本征GaN双层的价带顶上移越过了费米面。 图2、无磁态F-Ga2N2的(a)能带图和总态密度和分波态密度图 为了理解这种不同寻常的p轨道半金属性,我们首先计算了无磁态F-Ga2N2的能带图和态密度图(图2),得出其Stoner准则为3.445,表明该材料具有巡游铁磁性。构建4*4*1超胞后的铁磁态、反铁磁态和无磁态能量计算也证实了其铁磁性基态。 图3、不同插层浓度的F-Ga2N2体系的能带图 既然吸附/掺杂浓度通常会影响材料的电子结构,我们也研究了插层浓度对F-Ga2N2半金属性质的影响。当体系的插层浓度从前述100%降低到25%、11%和6.25%时,从图3可以看出插层体系的半金属性一直存在。 在器件设计中,二维材料通常由衬底支撑,两者之间的晶格失配引起的应变也会对二维材料的磁基态和电子结构产生影响。通过计算我们发现,F-Ga2N2的磁基态在双轴应变-10%~10%之间都没有发生变化,而且在10%的双轴拉伸时该体系的半金属性依然存在。 图4、不同双轴应变时的反铁磁-铁磁能量差DE = EAFM–EFM以及拉伸10%的能带图体系的能带图 总结 本文利用AMS软件的BAND模块,进行了F原子插层改变GaN双层电子结构和磁基态的研究。研究发现,不含过渡族金属的F-Ga2N2体系表现出了p轨道半金属性,其中部分填充的平带诱导的Stoner不稳定导致了铁磁有序,而强自旋劈裂导致了半金属性的出现。0.688 eV的半金属带隙使得该材料的半金属性在高温下依然可以存在。此外,鲁棒的半金属性不受插层原子浓度影响,且其在-10%~10%的双轴应变下也不会被破坏。 参考文献: Bai Pan, Like Lin, Yineng Huang, Linglu Wu, Sitong Bao, Haiming Lu, and Yidong Xia, Robust half-metallicity in non-metal atoms intercalated two-dimensional GaN bilayer, Appl. Phys. Lett., 123, 042106 (2023). (https://doi.org/10.1063/5.0156210) 感谢陆海鸣老师课题组供稿!

石墨烯片的共价功能化用于质粒 DNA 递送(RSC adv. 2023)

Posted · Add Comment

摘要 将基因输送到细胞中用于治疗和实验目的,常用的几种方法包括质粒转染和病毒载体。由于疗效有限和安全性问题值得怀疑,研究人员正在寻找更好的新方法。石墨烯在各种医学应用中引发了人们的兴趣,包括基因递送,它可能比传统的病毒载体更安全。 在最近的一项研究中,研究人员成功地用多胺对原始石墨烯片进行了功能化,以允许质粒 DNA(pDNA) 负载并增强其向细胞的递送。连接到多胺基团的四乙二醇衍生物成功地将石墨烯片共价官能化,以提高其水分散性,以及与 pDNA 相互作用的能力。使用光学显微镜、透射电子显微镜观察,验证了石墨烯片的分散性的改善。 使用 AMS 中的 BAND 模块进行的周期密度泛函理论计算表明,pDNA(由 pDNA 中的 G-T 碱基对表示)与功能化石墨烯之间存在强结合。此外,在 AMS 中的 QTAIM 被用于揭示功能化石墨烯和 pDNA 之间的键合性质。 参考文献 M. Assali, N. Kittana, N. Badran, S. Omari, Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study, RSC advances, 13(10), 7000-7008, 2023

煤气化过程中CuFe2O4改性膨润土对元素Hg的吸附-氧化作用研究(Fuel 2022)

Posted · Add Comment

研究内容 本文基于煤气化过程中存在的重金属Hg释放污染问题展开研究,针对Hg元素的释放特征,将CuFe2O4改性膨润土引入到煤气化过程实现Hg元素的原位吸附-氧化-脱除。本研究中融合了实验和热力学的技术方法,首先研究了CuFe2O4活性组分对煤气化过程中Hg的脱除效果。然后,采用密度泛函理论计算分析了CuFe2O4对Hg的吸附和氧化作用机理。该研究表明CuFe2O4改性膨润土作为一种高效、可回收的矿物吸附剂,为煤气化过程中Hg的脱除提供了一种创新的思路。 Fig.1 Role of CuFe2O4 in elemental mercury adsorption and oxidation on modified bentonite for coal gasification 要点1: 通过还原-氧化方法制备的CuFe2O4改性的膨润土增加了煤气化过程中吸附剂表面吸附Hg0的活性位点,使膨润土具有有效的磁性能,如图Fig. 2和Fig. 3所示。与纯膨润土相比,CuFe2O4改性的膨润土能够将更多的Hg0转化为Hg2+和颗粒状汞[Hg(P)],表现出更好的吸附和催化性能。此外,CuFe2O4改性的膨润土在煤气化高温过程中具有稳定的循环性能,如图Fig. 4所示。 Fig. 2. The morphologies of 30 wt%CuFe2O4/Ben. (a) and (b)SEM; (c)XRD; (d) Magnetization Fig. 3. The Hg0 removal performances with Ben and 30 wt%CuFe2O4/Ben.Changes in Hg0 with time;(b) Distributions of Hg with Ben and 30 wt%CuFe2O4/Ben Fig. 4. The regeneration […]

Fe/Co掺杂镍基载氧体的化学链燃烧反应机理和性能(Fuel Process Technol 2022)

Posted · Add Comment

CLC作为一种低能耗、低污染的新型能源利用方法,是实现清洁生产和高效转化的研究热点。CLC过程的关键任务之一是载氧体的反应活性和机理研究。众所周知,燃烧等热化学转化过程的化学反应行为与反应物的结构密切相关。NiO、Fe2O3、钙钛矿和尖晶石材料在CLC中表现出不同的反应行为和机理,这些差异主要来自于各种载氧体的化学组成、颗粒尺寸、表面形态和化学键特征。尽管已经在实验中研究了CLC中各种反应行为,从多尺度分子模拟、反应动力学和材料表征的角度,尚未全面了解Fe/Co掺杂的镍基载氧体的反应行为和机理,仍然面临许多局限性和挑战。 因此,本工作通过多尺度分子模拟和实验结合研究CLC过程中Fe/Co掺杂的镍基载氧体的反应机理和行为。主要工作由三部分组,分别是本征反应机理和性能、非本征反应性能评价、材料表征揭示反应行为。首先,采用多尺度分子模拟研究Fe和Co掺杂的NiO载氧体和H2分子之间的本征反应的反应能垒和机理。使用IGM和EDA研究H2分子与载氧体表面之间相互作用的区域、类型和强度。然后,使用H2-TPR和TGA测试系列Fe和Co掺杂的镍基载氧体的性能,得到转化率和表观活化能。最后,从颗粒尺寸、形貌、表面等材料表征学揭示本征反应和非本征反应的差异。 研究要点一: ReaxFF MD模拟提供了直接证明H2与NiO相互作用生成H2O分子的反应是基元反应的证据。整个CLC过程中截取H2生成H2O的反应机理如图1所示,H2向活性位点扩散,并倾斜吸附在载氧体表面(图1(a))距离约为2 Å。紧接着O原子迅速向H2转移,H-H键断裂的同时形成H…O…H键(图1(b))。形成的不稳定的结构,Ni-O键随即断开生成H2O分子(图1(c))。当脱附完成时,H2O分子的H-O键长分别为1.464和0.960 Å,H…O…H键角约为125°。H2O分子进一步弛豫得到合理的结构,并远离载氧体表面。下面接着使用DFT计算探索反应物、产物和过渡态的结构和能量更准确地描述反应过程。 图 1 截取ReaxFF MD模拟反应过程H2生成H2O的过程(红色球、蓝色球和白色球分别是O、Ni和H原子) 研究要点二: H2吸附在4层2×2的NiO (001)周期性平板模型(如图2(a)所示),镍和氧原子各32个,表示为Ni32O32。考虑Ni原子被Fe/Co掺杂取代的NiO载氧体模型表示为MNi31O32(M=Fe、Co和Ni),如图2(b)所示。H2吸附在MNi31O32载氧体表面的吸附构象分别是H2垂直吸附在M-top、O-top和空位(分别表示为T1、T2和T3),以及H2平行吸附在M—O、M…Ni和O…O桥位(分别表示为P1、P2和P3),其中M=Fe、Co或Ni,如图4-2(c)所示。总共构建18个结构用于研究H2在镍基载氧体表面反应机理。载氧体的连续氧释放反应模型被考虑并表示为Ni32O31、FeNi31O31和CoNi31O31。 图 2计算结构模型:(a) 4层2×2 NiO超胞模型;(b) MNi31O32模型(M=Ni、Fe或Co);(c)吸附位点 研究要点三: 18种模型的Ebinding值范围为-0.236~-0.016 eV。H2在Ni32O32表面的P3构象Ebinding值最负(-0.192 eV),是最佳吸附构型。该结果与ReaxFF MD模拟的结果一致,H2分子倾向于平行吸附在Ni32O32表面的O…O键。P2是最不稳定的构型,Ebinding值为-0.0761 eV。如图3(a)所示,H2吸附在FeNi31O32和CoNi31O32表面的P3构象的Ebinding最负(分别为-0.212和-0.236 eV)是优势吸附构象。该结果与H2吸附Ni32O32表面的优势吸附构象一致。因此,H2分子倾向于平行吸附在Ni32O32、FeNi31O32和CoNi31O32表面的O…O键。除了T1和T3外,随着Fe和Co掺杂,大多数Ebinding值变得更负,这表明Fe/Co掺杂有利于H2在OCs表面上的吸附。 研究要点四: 采用能量分解对H2分子吸附在Ni32O32、FeNi31O32和CoNi31O32表面的稳定吸附构象进行分析。最稳定的吸附模型(P3)的EPauli分别为0.264 eV、0.227和0.251 eV,这表明Fe和Co掺杂减少排斥相互作用表现出显著地稳定效应,这可以有效地活化载氧体的晶格氧。相比之下,Eelstat、Eorb和Edisp在P3吸附构象对总吸引力的贡献比例不同。H2吸附在Ni32O32、FeNi31O32和CoNi31O32表面的P3,Eelstat(38.1、36.1和38.0%)和Edisp(34.3、36.7和35.3%)的贡献几乎相等,并且两种相互作用的贡献都大于Eorb(27.6、27.2和26.7%)。因此,静电和色散相互作用为主,其次是轨道相互作用。这与表现出较弱相互作用的体系不同。Ni32O32、FeNi31O32和CoNi31O32在T2的Edisp的贡献分别增加到65.9、64.9和67.8%,因此色散相互作用成为三个载氧体表面吸引力的主要贡献,Eelstat和Eorb的贡献均低于20%。T1吸附构型中,Ni32O32以Eorb(50.3%)为主,而CoNi31O32以Edisp(53.2%)为主。Eelstat(29.5%)、Eorb(35.9%)和Edisp(34.6%)构成了T3的总吸引力。根据EDA结果,通过不同吸附模型调节静电、轨道和色散相互作用可以有效地增强H2吸附载氧体表面。 研究要点五: 图3(b)总结了CLC中H2与Ni32O32、FeNi31O32和CoNi31O32载氧体的不同反应势能面、反应坐标和反应能垒(ΔEbarrier)。H2在Ni32O32表面的ΔEbarrier值在0.998~1.974 eV。H2在Ni32O32表面的反应,P3的ΔEbarrier最低(0.998 eV),P2最高(1.974 eV);FeNi31O32表面反应的ΔEbarrier值从0.800 eV (P3)到1.614 eV (T2);CoNi31O32表面反应的ΔEbarrier值1.380~2.677 eV。因此,Fe掺杂降低了反应能垒,而Co掺杂相反。FeNi31O32和Ni32O32最佳反应路径都是P3,没有改变最佳反应路径。Co掺杂改变了反应路径,这可能导致CoNi31O32载氧体ΔEbarrier增加的因素之一。除了反应路径和ΔEbarrier值之外,另一个原因可能是Co掺杂导致更负的Ebinding值(较低的IS结合能),使能垒增大。 图3 不同构象的(a) Ebinding和(b) ΔEbarrier○在(a)中表示最负的结合能;(b)中表示能垒最高。△在(a)中表示最大的结合能;在(b)中表示能垒最低。 图4(a)所示H2与Ni32O32、FeNi31O32和CoNi31O32载氧体反应的最低ΔEbarrier值分别为0.998、0.800和1.380 eV。载氧体的本征反应的活性顺序为FeNi31O32>Ni32O32>CoNi31O32。这可能归因于纯Ni32O32中引入掺杂剂导致M—O键和M…Ni(M=Fe或Co)相比完美Ni32O32的Ni—O键和O…O和Ni…Ni键扭曲。H2平行吸附于纯Ni32O32表面的O…O (P3),距离为2.724 Å。H2在FeNi31O32表面,虽然P3是优势吸附构象,但H2略微偏向掺杂的Fe原子。Co掺杂的优势构象H2吸附在掺杂的Co原子上(T1),并且更靠近表面(3.048 Å)。在TS结构中,氧原子分别在Ni、Fe和Co原子上,H2O分子位置保持不变,直到反应完成(FS结构)。Fe和Co掺杂对载氧体中的M—O键(M=Fe、Co或Ni)和晶格氧的影响不同,从而显着改变了反应能垒。图4(b)是Ni32O31、FeNi31O31和CoNi31O31连续释氧过程的反应坐标和路径。Ni32O31、FeNi31O31和CoNi31O31的ΔEbarrier值分别为0.977、0.247和1.023 eV,略低于第一个释氧的值,说明第二个释氧反应更容易。由于Ni32O31、FeNi31O31和CoNi31O31含有氧空位有利于CLC反应,这和之前的报道的一致。 图4最佳势能面的ΔEbarrier和结构 (a) Ni32O32、FeNi31O32和CoNi31O32表面;(b) Ni32O31、FeNi31O31和CoNi31O31表面 结论: […]

铌、铝共掺杂的EuTiO3合金中增强的低场磁热效应(J. Mater. Sci. Technol. 2022)

Posted · Add Comment

概述 低温大磁熵变材料在太空科学领域和氢气液化的应用中具有重要的应用价值,因此高效低温磁制冷材料及其相关问题研究,也就成为当前国际上凝聚态物理领域的热点课题之一。稀土Eu基钙钛矿氧化物EuTiO3因具有大磁矩和低磁相变温度,是一类性能优良的低温磁制冷材料。但是,EuTiO3基态是反铁磁,如果能够选择的合金元素掺杂改变其磁基态,则可在低驱动场下实现大磁熵效应。中科院理化所的沈俊教授课题组和南京大学王敦辉教授、陆海鸣副教授课题组合作,结合第一性原理和实验研究了在Ti位同时掺杂Nb和Al对EuTiO3体系电子结构和低场磁热性能的影响。该研究成果为优选高性能低温稀土磁制冷材料提供了新思路。 图1 三种不同Nb和Al掺杂量的Eu(Ti,Nb,Al)O3的总态密度和分波态密度图 研究亮点 通过第一性原理计算,作者发现Nb和Al的共掺使得晶格常数增加且反铁磁的EuTiO3转变为铁磁态。从图1所示的Eu(Ti,Nb,Al)O3体系的总态密度(TDOS)和分波态密度(PDOS)图可以看出,Nb和Al的掺杂引起的自旋极化导致自旋向上和自旋向下不完全对称,巡游的Ti的3d和Nb的4d能级横跨费米能级,发生了绝缘体—金属转变。从PDOS图可以看到,巡游的Ti的3d电子、Nb的4d电子和Al的3p电子都和局域的Eu的4f电子发生交互作用,产生RKKY作用。Nb和Al的掺杂引发的反铁磁-铁磁相变可用四阶扰动理论(fourth-order perturbation theory)来解释。磁相互作用由两个独立的部分组成:RKKY作用和Anderson超交换(前者具有金属特性而后者具有半导体特性)。EuTiO3的态密度图中费米能级处的态密度为0,没有RKKY作用,此时,通过无磁的Ti4+离子的Anderson超交换在EuTiO3中占主导地位,体系为反铁磁。当Nb和Al置换掺杂进来后,自旋极化和交换分裂出现并增加,同时费米能级也移向高能量处,使得Anderson超交换耦合减弱而RKKY作用增强并占主导地位,因此体系呈铁磁态。 图2 不同成分化合物2K时的M(H)曲线以及与其他化合物等温熵变和有效制冷能力的比较 作者发现EuTiO3的磁化强度在磁场低于1 T时线性增加并在2 T时饱和(左图),而三种不同成分的Eu(Ti,Nb,Al)O3在1 T时均达到饱和且饱和磁化强度均高于EuTiO3,这说明Nb和Al的掺杂不仅可以显著降低临界场还可以提高其低场磁化强度。右图是1 T磁场下不同体系等温熵变和有效制冷能力的比较。三种不同成分的Eu(Ti,Nb,Al)O3的等温熵变约为-15.1 J/kg·K,比EuTiO3高了近40%。此外,EuTi0.8125Nb0.125Al0.0625O3和EuTi0.75Nb0.125Al0.125O3的有效制冷能力分别达到了88.1和86.0 J/kg,不仅比EuTiO3高了近315%,也都比其他化合物体系的有效制冷能力高。 总结 本文利用AMS软件的BAND模块,进行了通过不同价态阳离子共掺杂改变EuTiO3电子结构和磁基态的研究。研究发现,Nb和Al共掺杂不仅诱发了EuTiO3的绝缘体—金属转变,还引发了反铁磁-铁磁相变。实验结果还表明,共掺杂样品在1T低磁场下的磁熵变都达到了15 J/kg·K,是EuTiO3的1.4倍;特别是EuTi0.8125Nb0.125Al0.0625O3的有效制冷能力达到了88 J/kg,是EuTiO3的3倍。该工作明确了元素掺杂的EuTiO3体系中磁交换作用机理,为液氦温区磁制冷提供了有竞争力的候选材料。 参考文献 Huicai Xie, Wenxia Su, Haiming Lu, Zhaojun Mo, Dunhui Wang, Hao Sun, Lu Tian, Xinqiang Gao, Zhenxing Li, Jun Shen, Enhanced low-field magnetocaloric effect in Nb and Al co-substituted EuTiO3 compounds, J. Mater. Sci. Technol., 118, 128, […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •