119Sn核磁共振化学位移计算的基准研究(Inorg. Chem. 2022)

Posted · Add Comment

核磁共振(NMR)谱是阐明化学结构最重要的分析方法之一。然而对于某些原子核来说,可能的化学位移范围很大,相应的核磁共振测量往往很耗时。因此,利用稳健的量子化学方法进行可靠的化学位移预测具有广泛的意义。 为了评估用于预测119Sn NMR化学位移的常用方法和新量子化学方法的性能,最近一项研究提出了一个新的基准集,称为SnS51,包括50种含Sn化合物,其中Sn具有不同的键基序,分子大小从4到209个原子不等。共有51个119Sn NMR化学位移实验值,范围从2448到-2204 ppm,可作为计算方法评估的参考。 为了计算119Sn NMR位移,评估了15种密度泛函,将它们与三种不同相对论方法(标量X2C、ZORA和自旋轨道耦合ZORA)相结合,并基于CREST/CENSO算法生成的异构-旋转异构体集合,评估构象的柔性对化学位移预测的影响。此外还研究了119Sn NMR化学位移计算的结构依赖性,以及半经验量子力学(GFN2-xTB)或力场(GFN-FF)方法的适用性。为了进一步改善结果,作者研究了一种简单的线性标度方法。 研究表明,稳健的杂化泛函如PBE0,与TZP基组、COSMO溶剂化模型与自旋轨道耦合相对论哈密顿量相结合,总体平均绝对偏差良好,在100~ppm以下(另见NMR常见问题)。 参考 文献: J. B. Stückrath, T. Gasevic, M. Bursch, and S. Grimme, Benchmark Study on the Calculation of 119Sn NMR Chemical Shifts, Inorg. Chem. 2022, 61, 3903-3917

NMR的剧烈增强方法:PHIP-X(JACS 2021)

Posted · Add Comment

对于许多化学和生物医学应用,如反应监测或体内代谢的实时观测,核磁共振信号通常太弱。德国、俄罗斯多所大学联合研究,发展了一种增强核磁共振信号的新方法:通过质子交换中继的仲氢极化(PHIP-X),这种新方法实现了超50000倍的信号增强。 PHIP获得的极化非常强,通过质子交换实现的极化转移,具有广泛的适用性,PHIP-X将两者优势结合,能够增强1H和13C信号。在技术,已经验证能强烈增强不同醇、水、乳酸、丙酮酸和葡萄糖的核磁共振信号。PHP-X具有如此强和多用途的NMR增强,为核磁共振在化学和生物医学领域的许多潜在应用提供了新的基础。 本文使用AMS中ADF、BAND计算H-H J-coupling等。 参考文献: K. Them et al., Parahydrogen-Induced Polarization Relayed via Proton Exchange, J. Am. Chem. Soc. 143, 13694 (2021)

ADF Highlight:PDMS-PEG团聚体中缺电子Pt1(0)形成机理(Nature Comm.,2019)

Posted · Add Comment

文献资料:Kairui Liu, Guangjin Hou, Jingbo Mao, Zhanwei Xu, Peifang Yan, Huixiang Li, Xinwen Guo, Shi Bai & Z. Conrad Zhang, Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates, Nature Communications volume 10, Article number: 996 (2019) 虽然载体表面稳定单原子的报道已经屡见不鲜,但在液体介质中合成原位还原的稳定弱配位分散金属原子更具挑战性。本文报道了在液体PDMS-PEG中还原H2PtCl6,形成单核缺电子Pt1(0) (Pt1@PDMS-PEG),该还原反应通过紫外-可见光谱、远红外光谱和X-射线光电子能谱得到证实。 CO红外光谱、195Pt与13C核磁共振谱证实Pt1(0)以近似八面体结构(R1OR2)2Pt(0)Cl2H2存在,其中R1、R2 分别是H、C或Si基团。通过比较实验与理论计算的195Pt核磁共振谱,验证了弱配位结构(R1OR2)2Pt(0)Cl2H2以及缺电子Pt1(0) 。质子态H+与Cl−形成类似HCl的弱配位,用碱中和生成铂纳米粒子。Pt1@PDMS-PEG在石蜡氢化硅烷化中表现出超高的活性以及最终加成物选择性。 NMR位移计算使用ADF模块,利用ZORA方法考虑重元素Pt的相对论效应。

ADF

Posted · Add Comment

概述 ADF是历史最悠久的模块,是世界上第一个DFT软件。 ADF擅长分子、团簇DFT计算。使用目前最先进的相对论方法,精确考虑自旋-轨道耦合效应,全面包含分子与团簇在第一性原理计算领域的常见功能。 主要功能 效率:支持节点内、跨节点高效并行计算,对较大体系,128核甚至256核也能达到近乎线性的加速大体系计算,例如大体系吸收光谱方法:最先进的相对论方法,计算自旋-轨道耦合,因此对过渡金属、重元素体系、磷光与系间窜跃也非常擅长GW方法:G0W0、 eigenvalue-only self-consistent GW (evGW)、G3W2 泛函更新迅速,包含所有最新的重要泛函,例如SCAN、-D4(EEQ)色散修正泛函等高精度STO基组丰富的光谱性质、非线性光学、热力学、核磁共振丰富的分析方法:成键分析、电荷与电子密度分析功能列表:成键分析与化学反应:键级、键能、能量分解EDA、电荷分解CDA、化学价自然轨道ETS-NOCV分子轨道MO投影到碎片轨道SFO、SFO可视化通过Laplacian电子密度与键关键点区分化学键类型、DORI过渡态搜索、自动探索过渡态和局部能量最小值谱学性质:紫外可见吸收谱(非相对论方法、相对论动能修正、考虑自旋轨道耦合),X射线吸收谱(XANES、EXAFS、XPS)、激发态的辐射跃迁寿命、磷光发射谱、荧光发射谱、SOCME估算系间窜跃、激发态间跃迁偶极矩新的快速计算紫外可见吸收光谱的方法POLTDDFT考虑COSMO溶剂化的TDDFT红外光谱、拉曼光谱、表面增强拉曼光谱、AOResponse: 考虑旋轨耦合的极化率与Raman光谱(开壳层)NMR化学位移(其他商业软件目前较难正确计算顺磁项)、NICSVCD、MCD、ESR、EPR、零场劈裂ZFS、Frank-Condon谱极化率、原子核处电子密度 非线性光学:超极化率、衰减一阶超极化率β、衰减二阶超极化率γ、零频β、光学矫正β、EOEP β、SHG β、零频γ、EFIOR γ、OKE γ、IDRI γ、EFISHG γ、THG γ、TPA γ 多种特殊模型处理方法:新QTAIM与Conceptual DFT,Constrained DFT,FDE方法,收缩变分DFT(CV(n)-DFT)用于单重态-三重态激发的计算(该功能不像普通的TDDFT那样被电荷转移激发所困扰)、配体场DFT(LFDFT)(对 d → d和f → d电子转移的情况,令计算结果更可靠),基于LFDFT的ESR g-张量双峰、XMCD计算DIM/QM(DRF梯度)电荷、电子密度分析:一般DFT方法、高精度GW方法计算电子亲和势EA、解离势IPAIM(Bader)、NBO分析Natural Population Analysis(NPA)、Mulliken(默认计算)、Hirshfeld(默认计算)、Voronoi形变电荷(默认计算)ELF、(非共价作用)NCI、SEDD、基态差分电子密度、电子激发差分电子密度 电荷迁移性:转移积分方法计算分子间载流子迁移性、金属-配体电荷转移(MLCT)、激发态电荷转移描述符溶剂化方法:隐式溶剂化COSMO、SCRF、3D-RISM、FDE显式溶剂化:QMMM、多尺度模拟 范德华色散系数 热力学性质:热容、Gibbs自由能、熵、焓等 磁学性质:磁化率、Verdet常数、旋转g张量 ADF泛函列表 应用 AMS知识库,阅读ADF最新应用案例中文教程