【中南大学仲奇凡教授课题组】改质煤沥青的分子结构建模及其原子尺度的焦化机理研究(Fuel 2023)

Posted · Add Comment

相关背景 煤沥青是煤焦油蒸馏工艺的副产品,由于其具有含碳量高、杂元素含量低、廉价且来源广泛等优势。对煤沥青进行改质可以获得更高的结焦值和软化点,改质煤沥青是石墨电极、碳纤维、碳纳米管、C/C复合材料等高附加值碳制品的重要优质原料。改质煤沥青的焦化是制备高附加值碳素产品的必经工序,它决定了产品的真密度、机械强度、电导率、石墨化度等性能。探索改质煤沥青焦化机理对优化高附加值碳材料的制备工艺具有重要意义。然而,现有科学文献对MCTP的微观结构组成及焦化过程的深度演化机制研究较少,本文精确构建了改质煤沥青的分子结构模型,并基于ReaxFF分子动力学方法对改质煤沥青的焦化机理在原子尺度上进行了深度研究,为实现改质煤沥青更高值化的利用,以及高附加值碳材料制备工艺的改进提供理论了依据。 研究亮点 通过一系列的检测分析(XRD, 13C NMR, FT-IR, XPS, MALDI-TOF-MS等)获得了MCTP的微观结构特征和组成。MCTP的碳骨架主要由芳香结构组成,芳香结构单元主要为苯和萘。脂肪族结构主要以甲基和亚甲基的形式存在。MCTP的分子量分布集中在1500 Da范围内。MCTP中含O、N和S的官能团分别以醚、季氮和无机硫的形式存在。在此基础上,建立了能够表征改质煤沥青微观结构特征和组成的分子模型(C93H59NO)。利用AMS2019软件中ADF模块计算改质煤沥青分子模型的量化性质,得到的13C NMR和FTIR图谱与实际检测结果吻合,验证了模型的合理性。 运用所建立的分子模型、ReaxFF MD模拟(AMS2019软件ReaxFF模块)、TG-MS、XRD和SAXS分析,揭示了改质煤沥青焦化过程中的挥发份去除及结焦机理。改质煤沥青焦化过程中挥发物的去除是由改质煤沥青分子边缘结构的破坏和活性自由基的产生引起的。主要挥发产物为H2、H2O、CO、CH4和C2H4。挥发分主要在430 ~ 900 K的温度范围内析出。对于焦化过程,XRD和SAXS分析表明,沥青焦样品的结晶和石墨化程度在挥发分去除阶段(低于973 K)被破坏,在高温阶段(>高于973 K)得到改善,Lc、Nc、La、Rg和孔隙率在1573 K时分别达到3.81 nm、12.03 nm、1.68 nm、18.54 Å和9.9%。在ReaxFF MD模拟过程中,沥青焦核的真密度(最终为2.2 g/cm3)、RDF临界峰强度、sp2杂化键比例(最终为41.4%)和六元环比例(最终为63.3%)均呈现先下降后上升的趋势。实际检测分析(XRD、SAXS)和ReaxFF MD模拟得到的结论可相互映证。沥青焦核的形成可分为两个阶段:焦核的形成阶段和有序化阶段。在形核阶段,改质煤沥青分子中的开环反应和脂肪链的交联导致了初级焦核的形成,主要通过三条反应路径,在路径一中,芳香烃通过芳香甲基直接连接;在路径二中,由边缘六元环断裂形成脂肪链,然后通过脂肪链结合实现芳烃的聚合;在路径三中,两个芳烃边缘的C原子相互结合形成五元或七元环结构。在有序化阶段,在初级焦核内会发生缩聚和芳构化反应,最终形成沥青焦微晶核。 图1 文章摘要图 图2 研究流程示意图 图3 改质煤沥青分子结构模型及验证 图4 改质煤沥青结焦机理图 参考文献 Zihan You, Jin Xiao, Gang Wang, Zhen Yao, Ye Wan, Qifan Zhong, Molecular representation and atomic-level coking evolution investigation of modified coal tar pitch […]

119Sn核磁共振化学位移计算的基准研究(Inorg. Chem. 2022)

Posted · Add Comment

核磁共振(NMR)谱是阐明化学结构最重要的分析方法之一。然而对于某些原子核来说,可能的化学位移范围很大,相应的核磁共振测量往往很耗时。因此,利用稳健的量子化学方法进行可靠的化学位移预测具有广泛的意义。 为了评估用于预测119Sn NMR化学位移的常用方法和新量子化学方法的性能,最近一项研究提出了一个新的基准集,称为SnS51,包括50种含Sn化合物,其中Sn具有不同的键基序,分子大小从4到209个原子不等。共有51个119Sn NMR化学位移实验值,范围从2448到-2204 ppm,可作为计算方法评估的参考。 为了计算119Sn NMR位移,评估了15种密度泛函,将它们与三种不同相对论方法(标量X2C、ZORA和自旋轨道耦合ZORA)相结合,并基于CREST/CENSO算法生成的异构-旋转异构体集合,评估构象的柔性对化学位移预测的影响。此外还研究了119Sn NMR化学位移计算的结构依赖性,以及半经验量子力学(GFN2-xTB)或力场(GFN-FF)方法的适用性。为了进一步改善结果,作者研究了一种简单的线性标度方法。 研究表明,稳健的杂化泛函如PBE0,与TZP基组、COSMO溶剂化模型与自旋轨道耦合相对论哈密顿量相结合,总体平均绝对偏差良好,在100~ppm以下(另见NMR常见问题)。 参考 文献: J. B. Stückrath, T. Gasevic, M. Bursch, and S. Grimme, Benchmark Study on the Calculation of 119Sn NMR Chemical Shifts, Inorg. Chem. 2022, 61, 3903-3917

NMR的剧烈增强方法:PHIP-X(JACS 2021)

Posted · Add Comment

对于许多化学和生物医学应用,如反应监测或体内代谢的实时观测,核磁共振信号通常太弱。德国、俄罗斯多所大学联合研究,发展了一种增强核磁共振信号的新方法:通过质子交换中继的仲氢极化(PHIP-X),这种新方法实现了超50000倍的信号增强。 PHIP获得的极化非常强,通过质子交换实现的极化转移,具有广泛的适用性,PHIP-X将两者优势结合,能够增强1H和13C信号。在技术,已经验证能强烈增强不同醇、水、乳酸、丙酮酸和葡萄糖的核磁共振信号。PHP-X具有如此强和多用途的NMR增强,为核磁共振在化学和生物医学领域的许多潜在应用提供了新的基础。 本文使用AMS中ADF、BAND计算H-H J-coupling等。 参考文献: K. Them et al., Parahydrogen-Induced Polarization Relayed via Proton Exchange, J. Am. Chem. Soc. 143, 13694 (2021)

ADF Highlight:PDMS-PEG团聚体中缺电子Pt1(0)形成机理(Nature Comm.,2019)

Posted · Add Comment

文献资料:Kairui Liu, Guangjin Hou, Jingbo Mao, Zhanwei Xu, Peifang Yan, Huixiang Li, Xinwen Guo, Shi Bai & Z. Conrad Zhang, Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates, Nature Communications volume 10, Article number: 996 (2019) 虽然载体表面稳定单原子的报道已经屡见不鲜,但在液体介质中合成原位还原的稳定弱配位分散金属原子更具挑战性。本文报道了在液体PDMS-PEG中还原H2PtCl6,形成单核缺电子Pt1(0) (Pt1@PDMS-PEG),该还原反应通过紫外-可见光谱、远红外光谱和X-射线光电子能谱得到证实。 CO红外光谱、195Pt与13C核磁共振谱证实Pt1(0)以近似八面体结构(R1OR2)2Pt(0)Cl2H2存在,其中R1、R2 分别是H、C或Si基团。通过比较实验与理论计算的195Pt核磁共振谱,验证了弱配位结构(R1OR2)2Pt(0)Cl2H2以及缺电子Pt1(0) 。质子态H+与Cl−形成类似HCl的弱配位,用碱中和生成铂纳米粒子。Pt1@PDMS-PEG在石蜡氢化硅烷化中表现出超高的活性以及最终加成物选择性。 NMR位移计算使用ADF模块,利用ZORA方法考虑重元素Pt的相对论效应。

ADF-分子与团簇的DFT计算

Posted · Add Comment

概述 ADF 是世界上最早的 DFT 计算软件,计算功能非常完善、全面,建模、分析用户界面对初学者非常友好,节点内、跨节点并行计算效率非常高效。 一般功能:电子与结构、谱学与非线性光学性质、化学反应、热力学性质、溶剂化效应等,并包括高精度GW方法精确计算分子解离能与亲和势。 光学材料:零场劈裂、激发态辐射速率与寿命、系间窜跃、自旋轨道耦合,高精度GW方法精确计算ΔES-T。为OLED器件模拟软件Bumblebee提供原子层级模拟数据输入,辅助OLED器件模拟。 重元素与配合物:重元素体系研究必备工具,包含高精度相对论方法ZORA、X2C,完善的轨道成分分析、以及最流行的化学键分析方法EDA-NOCV、IQA等。 功能列表 效率优势: 支持节点内、跨节点高效并行计算,对较大体系,千核并行也能达到非常高加速比 支持大体系计算,例如大体系吸收光谱 普通工作站,甚至台式机就可以计算几百原子的规模的TDDFT性质 方法优势: 精确相对论方法计算自旋-轨道耦合,擅长过渡金属、重元素体系,磷光与系间窜跃 限制性开壳层分子计算,及其 TDDFT 计算 GW方法(支持自旋轨道耦合):(G0W0、evGW、G3W2)方法精确计算 IP 与 EA、GW-BSE 方法精确计算 S0-T1 能隙 RPA近似:sigma-functional 泛函更新换代迅速(ADF 泛函列表),及时引入最新的重要泛函,例如 r2SCAN-3c、TASKxc、TASKCC、D4(EEQ) 色散修正等 高精度 STO 基组:对于重元素的电子轨道计算,其他基组很容易出现定性错误(例如轨道组分不正确),ADF 可靠性久经考验 QTAIM 与 Conceptual DFT,Constrained DFT,FDE 方法,收缩变分 DFT(CV(n)-DFT)用于单重态-三重态激发的计算(该功能不像普通的TDDFT那样被电荷转移激发所困扰)、配体场DFT(LFDFT)对 d → d和f → d电子转移的情况,令计算结果更可靠),基于LFDFT的 ESR g-张量双峰、XMCD 计算、DIM/QM(DRF 梯度) QM/MM与多尺度方法 功能列表: 能级分析 分子轨道MO投影到碎片轨道SFO、SFO可视化 分子能级与片段能级之间的关系 键合分析 […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •