探究睡眠呼吸暂停【Simpleware应用】

Posted · Add Comment

概述 理解如何维持气道通畅的基础是咽部被动机械变形对上气道塌陷的作用进行分析。本项研究首先在 Simpleware 软件中使用 CT 扫描数据创建了精细的 3D 解剖模型,然后采用有限元分析(FEA)方法研究变形情况。结果与体内试验及文献报道吻合较好,可以作为更全面地模拟人上气道塌陷和治疗阻塞性睡眠呼吸暂停的起点。 亮点 从 CT 获取人体上气道图像数据在 Simpleware ScanIP 中重建 36 个不同的解剖结构在 Simpleware FE 中生成有限元网格并施加内气道压力边界条件在 ANSYS Workbench 中进行气道变形模拟 图像处理和网格生成 采用多层螺旋 CT 扫描仪获取一例 79 岁男性的正常气道 CT 扫描数据。通过 Simpleware ScanIP 对 DICOM 文件进行三维重建和分析。对整个图像应用二值化的中值滤波以降低噪声;采用噪声曲率流滤波器促进区域内平滑、抑制区域间平滑、去除噪声,增强灰度边界。对36个单独的组织、骨骼、软骨、韧带、肌肉和膜的解剖结构进行分割。采用递归高斯平滑对分割后的结构进行平滑处理,进一步降低噪声水平,减弱锐利的边缘。将模型的下侧裁剪至声带附近,从而减少 FEA 的计算需求。 图:用于 FEA 的三维模型渲染图。每个数字和不同颜色代表特定的解剖结构。 使用 Simpleware FE 创建由正四面体单元组成的网格,进行局部网格细化和额外的网格改进措施。多部分网格在接触界面上具有共享节点,在气道壁上定义的节点集施加内气道压力边界条件,并在立方体域边界与模型的界面处定义节点集;在这里也采用了固定边界条件。 模拟结果 划分的网格和节点集以 .cdb 格式导入 ANSYS Workbench 进行模拟。在 Image J 中分析横截面积,证明网格已收敛。在小变形的限制下估算被动咽部组织的性质,以线性弹性作为合理假设。 在不同气道压力下分析口咽部和腭咽的横截面积,确定大气压(零)附近的面积随压力的变化斜率,并与已发表的放松状态下已麻醉正常人的体内实验数据进行比较。研究结果提供了新的理解,有助于进一步基于图像建模研究,也有助于针对口腔压力治疗设备进行新型医疗器械设计。 图:在基于三维 CT 的人咽部有限元模型中,整体和定向局部变形的矢状断面视图。(A)总变形;(B)横向变形;(C)前后向变形;和(D)垂直向变形 参考 致谢请参考英文原文;Carrigy, N.B. et al., 2016. Simulation of muscle and adipose tissue deformation in the passive human pharynx. Comput Methods Biomech […]

传感器材料与器件的模拟【QuantumATK亮点文章】

Posted · Add Comment

基于高导电碳纳米管/聚氨酯复合纤维的可穿戴式应变传感器 高导电性和可伸缩性纤维因其在柔性可穿戴电子设备中的潜在应用而受到越来越多的关注。羧基化碳纳米管(c-CNT)被涂覆在柔性纤维上,作为制造可穿戴式应变传感器的方便方法。然而,由于碳纳米管的石墨化结构在羧化过程中被破坏,碳纳米管的导电性降低。如何让 c-CNT 复合纤维具有高导电性仍然是一个重大挑战。此研究通过在聚氨酯(PU)纤维上涂覆金属离子连接的 c-CNT 来制备高导电纤维,以提高 c-CNT 之间的电子传输速率。由 Fe2+ 离子和羧基形成的金属配位结显著提高了 PU 的导电性 /CNT@Fe2+ 纤维(高达 72 S m−1). 密度泛函理论计算证明,这种高导电性是具有强电子态耦合的配位结促进电子输运的结果。由此产生的配位效应增强了碳纳米管之间的相互作用,使导电网络更加灵活。基于聚氨酯的应变传感器/CNT@Fe2+ 纤维具有高灵敏度(50% 应变下的规范系数为 36)、大应变范围、不明显的漂移和耐久性。纤维应变传感器成功地用于监测关节运动和面部表情。【Zaiyu Zhuang, et al. Nanotechnology 31 (2020) 205701】 应变和电场作用下小分子在GeP单分子膜上的可调吸附行为 作者使用第一性原理计算方法研究了 GeP 单层膜对小气体分子(CO、CO2、O2、H2O、NH3、NO 和NO2)的传感特性。根据计算的吸附距离、吸附能和电荷转移,作者发现 GeP 单层膜对 NO2 和 NO 分子最敏感,所有气体分子都作为受体从 GeP 单层膜中获得电子。NO2 分子的吸附能小于 NO 分子的吸附能,这意味着 NO2 更容易从 GeP 中解吸。不同的功函数变化也表明了在无氧环境中识别 NO2 和 NO 的可能性。此外,作者将单轴和双轴应变应用于 GeP 单层膜,发现较小的双轴压缩应变可以有效地提高基于功函数型传感器的 GeP 对 […]

增材制造个性化骨增量钛网的工程实现【Simpleware应用】

Posted · Add Comment

简介 引导骨组织再生(guided bone regeneration,GBR)是一种口腔种植骨增量技术,在骨缺损区利用屏障膜维持空间并阻挡增殖较快的上皮细胞和成纤维细胞长入,保证增殖速度较慢的成骨细胞优势增长而形成骨。随着增材制造(常被称为“3D打印”)技术的发展,可利用计算机辅助设计(computer aided design,CAD)设计出与患者颌骨形态贴合并且具有预期骨增量水平的个性化钛网模型,在激光的作用下通过材料逐层累积将其“打印”出来,最终将这种个性化骨增量钛网用于引导骨组织再生手术。与传统钛网相比,增材制造的个性化骨增量钛网更加贴合骨缺损部位,极大缩短手术时长并降低钛网暴露率,尤其适用于大面积、解剖形态复杂的骨缺损病例。 个性化骨增量钛网工艺研发 对于增材制造个性化骨增量钛网产品,研发工程师与口腔种植科的临床医生和影像科医生组建钛网项目团队,经由主治医生获得患者的影像数据(CBCT产生的“.DICOM”数据)及其对患者预期骨增量的要求,同时主治医生还会提供患者的口内扫描数据、修复体和种植体规划数据等作为钛网设计的参考模型。研发工程师将“.DICOM”数据导入到Simpleware Scan IP软件中进行解剖结构的三维模型重建,包括患者骨缺损处的颌骨、邻牙及牙根、神经管(下颌病例)并将其导出为“.STL”格式的三维模型。使用光敏树脂材料将带邻牙的颌骨模型增材制造出来,用于个性化骨增量钛网的试配。以口腔修复为导向,根据主治医生预期骨增量要求,以及钛网与邻牙、神经等解剖结构的位置关系,同时考虑固定钛网用的钛钉尺寸和位置,设计出钛网的轮廓面。在Solidworks 软件中将钛网网孔的单胞结构填充于钛网轮廓面上并增加钛网的厚度为0.3~0.4 mm,导出“.STL”格式的钛网模型。下图显示了个性化骨增量钛网的设计模型及其与颌骨、钛钉和骨粉配合在一起的示意图。个性化设计出来的钛网模型可以进行有限元分析和静力学计算,以评估钛网植入后的生物力学性能。 图:个性化骨增量钛网的增材制造 图:个性化骨增量钛网设计模型,包括有严重骨缺损的下颌骨、个性化骨增量钛网、钛网固定钛钉和人工骨粉 在完成钛网的CAD设计和CAE仿真后,将钛网模型(“.STL”格式)进行增材制造工艺支撑和打印布局的设计,钛网及其工艺支撑按照25μm厚度进行切片,切片后的数据导入至增材制造设备MLab中,使用医用纯钛材料进行增材制造,所得产品在热处理后进行线切割和去支撑,经过打磨后进行喷砂处理,最后进行超声清洗以及灭菌杀毒,使用无菌包装将其封闭。主治医生在种植手术时将个性化骨增量钛网拆除包装直接植入患者口腔,在手术完成后拍摄即刻CBCT。 骨缺损颌骨三维重建和个性化骨增量钛网设计 根据每位患者的CBCT数据三维重建生成骨缺损颌骨模型,使用光敏树脂材料增材制造出用于个性化骨增量钛网试配和术前评估;依据临床要求对骨缺损颌骨进行“数字雕刻”,即通过模拟现实中蜡型雕刻方式制作数字化的模型,设计出满足预期骨增量要求的“完美”颌骨,在此基础上完成个性化骨增量钛网的模型设计。相较于传统钛网,采用“全程数字化”技术设计和制造的个性化骨增量钛网更贴合患者牙槽骨形态,避免了术中需要折弯剪裁的复杂步骤,节省大量手术时间;个性化骨增量钛网适合多种复杂骨缺损病症,为引导骨再生手术提供稳定的成骨空间,实现了种植术后功能重建和美学的可预期性。 图:由患者CBCT数据重建而成的骨缺损颌骨和个性化骨增量钛网模型 为了提高设计效率同时有效减小“金属伪影”对模型尺寸精度的影响,工程师开发出基于神经网络的深度学习算法,对目前已处理的200多例患者CBCT数据进行精准标注和训练,产生预训练模型用于解剖结构的分割、检测和分类任务,最终实现自动生成骨缺损颌骨和邻牙的精准三维模型。 结论 根据患者的解剖结构和预期的骨增量水平定制式设计出个性化骨增量钛网,通过有限元分析对钛网的设计模型进行验证,通过增材制造的工艺将其生产出来,同时在生产过程中增加“随炉试样”用以验证钛网成品的理化性能。增材制造的个性化骨增量钛网可以获得满足临床应用要求的性能,其临床上的长期有效性有待钛网植入后进一步的随访观察。 参考 张立强:增材制造个性化骨增量钛网的工程实现。中国口腔种植学杂志 2021 年 12 月第 26 卷第 6 期,第354~361页。

基于CrI3的磁隧穿结中磁阻的层数依赖行为【QuantumATK亮点文章】

Posted · Add Comment

简介 磁隧穿结广泛应用于磁头、磁随机存储器等自旋电子学器件中,其磁电阻大小直接决定了器件的存储密度大小。基于二维磁性材料的磁隧穿结相比于传统的基于块体的磁隧穿结,由于具有表面平整无悬挂键等优点,在磁电阻上表现出明显的优势。目前实验上已经在以 2 层、3 层,4 层和 10 层 CrI3 为隧穿层的磁隧穿结中观测到了 310%、2000%、8600% 和 106 %的磁电阻,其中的最大值远远高于传统的基于 MgO 隧穿层的磁隧穿结(1000%)。因此,系统地研究基于二维磁性材料的磁隧穿结中磁电阻随层数的变化关系,将有助于突破目前磁隧穿密度的极限。基于此,北京大学吕劲研究员和杨金波教授课题组合作,采用第一性原理结合非平衡格林函数的方法,系统计算了以 2~12 层 CrI3 为隧穿层,以 Ag 为电极的磁隧穿结中的磁电阻变化,同时也探究了偏压、磁化方向等因素对磁电阻的影响。该研究结果为发展具有更高磁存储密度的低维自旋电子学器件提供了新的思路。 图1. CrI3晶格结构与不同层数和磁序下的能带结构   CrI3是一种层内铁磁耦合,层间反铁磁耦合的二维范德华磁性半导体。由于层间耦合较弱,其自旋分辨的能隙随层数变化较小。在以Ag为电极,以CrI3为隧穿层的磁隧穿结中,铁磁态的电导远远高于反铁磁的电导,且铁磁态情形下能够获得接近100%的自旋极化率。铁磁态电导随层数呈现奇偶振荡的变化趋势,而反铁磁态的自旋极化率则随层数呈现奇偶振荡的趋势。 图2. Ag/2~12层CrI3/Ag磁隧穿结结构示意图;电导、自旋极化率随层数变化情况 作者发现,以Ag的电极的磁隧穿结的磁电阻在7层以下呈奇偶振荡的变化的趋势,在7层以上则是呈单调递增的趋势,在12层CrI3的器件中获得了高达109%的磁电阻。通过与以石墨为电极的磁隧穿结计算结果的对比,以及对投影局域态密度的分析,作者图1. CrI3晶格结构与不同层数和磁序下的能带结构发现由金属电极引起的邻近CrI3层的金属化是引起磁电阻奇偶振荡的原因。 图3. 不同磁隧穿结中磁电阻随层数变化情况 图4. 不同电极情况下自旋分辨的投影局域态密度(以4层CrI3为例) 总结   本文利用QuantumATK软件,研究了基于二维CrI3的磁隧穿结的量子输运。研究发现,隧穿磁电阻与隧穿层层数大致呈正相关关系,计算获得了最高达到109%的磁电阻。另外,磁隧穿结中的金属电极是造成隧穿磁电阻振荡的关键。该工作证明了二维磁性材料在自旋电子学研究中的潜力,明确了层数对磁电阻的影响,对器件的实验实现具有指导意义。 参考文献   B. Wu, J. Yang, R. Quhe, S. Liu, C. Yang, Q. Li, J. Ma, Y. Peng, S. Fang, J. Shi, J. Yang, J. Lu […]

孔径对颗粒基催化剂流动的影响

Posted · Add Comment

概述 硅铝颗粒基催化剂中孔隙结构对大尺度(约104 m)流体流动的影响对于了解其性能具有非常重要的意义。本项目采用多尺度层析成像(MT)方法获取催化剂颗粒从纳米到毫米尺度的图像。所用试样均在不同温度下烧结/煅烧。 将图像导入 Simpleware 软件中进行分析和分割,对纳米/微米结构中每种长度尺度划分网格。为研究不同孔径对流动的影响,在 ANSYS Fluent 中进行渗透率计算,使人们对催化剂的输运性质有新的认知。 亮点 由 XMT、DBFIB / FIBSEM 和 ET 获得不同长度尺度的三维数据将数据分割成二值化数据集使用 Simpleware FE 为每种长度尺度的复杂纳米/微米结构生成 CFD 网格在 ANSYS Fluent 中计算渗透率模拟与实验测试相结合,确定孔隙率对流动的影响 图像采集 将两种颗粒基催化剂挤压成三叶状颗粒,在不同温度下煅烧生成2个样品并扫描。采用同步辐射X射线三维成像(XMT)、双束聚焦离子层析成像术(DBFIB)和电子断层三维重构(ET)获得不同长度尺度的三维图像。 在3D层析成像重建后对数据进行处理,减少噪音和分割块体材料与空洞,从而得到一个二值化的数据集。对颗粒样品也进行了实验测量以确定渗透率。 图:不同层析技术下其典型体素长度尺度的表征 图像处理&网格化 为模拟流经催化剂颗粒的渗透率,使用 MATLAB® 镜像层析体积,结合 Simpleware ScanIP 和 Simpleware FE 将每种长度尺度的纳米/微米结构转换为体积网格。利用填充工具选择感兴趣区域,流体边界界面处的网格划分要比块体精细,并在网格的上下游方向添加缓冲区以便导出至 ANSYS Fluent 为渗透率的 CFD 分析做好准备。将较精细长度尺度的模拟结果输入到下一个长度尺度的结构中,直至模拟考虑了催化剂中的所有相关尺度。 图:Simpleware FE中S2催化剂颗粒(红色孔隙)微观结构的多部分网格划分 模拟&结果 分析证实:与在较高温度下烧结的催化剂相比,经过较低温度烧结的催化剂颗粒是如何产生更大、更开放且具有更好连通性的孔隙结构。 存在更开放的孔隙结构使得活性位点间的渗透性和流动性更好,从而增强催化剂性能。因此,通过 MT 获得不同长度尺度孔隙结构的流体流动研究为未来催化剂性能的定制化和改进其他能源材料的广泛应用提供了基础。 图:跨长度尺度的孔隙率示例:将体积A的渗透率(K)融入体积B的主体

模拟孔隙尺度的化学输运

Posted · Add Comment

概述 基于图像的建模可用于分析通过多孔介质的传质现象,特别适用于储层岩石孔隙-喉道网络。这些分析的目的是为提高我们对流体通过可变孔隙尺度运动方式的理解和表征。 本项目使用真实结构的 micro-CT 图像数据,在 Simpleware 软件中进行可视化和处理,生成网格化的3D模型,然后将其导出至 COMSOL Multiphysics®中研究化学输运机制。 亮点 从开源库中获取真实岩石结构的 micro-CT 数据在 Simpleware ScanIP 中进行图像处理和分割在 Simpleware FE 中为孔隙结构生成高质量的多相网格在 COMSOL Multiphysics 中进行孔隙尺度化学输运模拟 图像处理 使用帝国理工学院孔隙尺度模型(PERM)联盟提供的开源岩石 CT 图像库中的 micro-CT 数据,获得孔隙空间和微观结构的 RAW 图像文件。在 Simpleware ScanIP 中将图像数据转换为基于 3D 体素的几何结构,为网格划分做准备。由于 CT 扫描通常会产生噪音,此步骤的处理极其复杂。为了渲染构造良好的岩石和孔隙相,在 ScanIP 软件中使用了一系列的视觉滤波器和图像处理技术。 图:Simpleware ScanIP中micro-CT数据的可视化和分割 利用 Simpleware FE 模块为多相流模型生成非常稳健的 CFD 网格,并直接导出至 COMSOL Multiphysics。 图:使用Simpleware FE模块生成网格化的多孔结构模型 然后将网格化的多孔介质模型导入商用偏微分方程(PDE)求解器 COMSOL Multiphysics® 中求解 […]

QuantumATK亮点文章:具有可调载流子输运和电子特性以及高电流开关比的二维GeC2

Posted · Add Comment

概述 二维材料中大部分都具有优异的电学和光学性能,这使得它们在纳米电子学、光电子学和热电学等各种各样的应用场景下具有很大的潜力,但是性能仍然需要优化。例如,硅烯和锗带隙太小(带隙值<0.1 eV)难以实现晶体管的电流开关。MoS2 具有理想的带隙,但其较低的迁移率限制了其在某些器件中的应用。磷烯不仅具有理想的带隙,而且拥有高各向异性载流子迁移率,但其在空气中易氧化的特性是器件应用中的主要限制。 研究者仍需继续努力探索具有合适带隙、高载流子迁移率和高稳定性的新型二维半导体材料,并通过应变工程、多层堆叠等技术来改善现有二维半导体材料的电子特性。应变工程是调整二维材料电子特性的一种常用技术,因为二维材料本身可以承受比其块体材料更大的机械应变,这就拓宽了它们在纳米电子和光电器件中的应用。多层堆叠是调节二维材料特性的另一种策略,可以产生新的电子器件,因为许多二维材料的带隙大小变化很大程度上取决于层数。 在众多电子器件中,具有负微分电导效应的二维材料非常受欢迎。目前,大多数具有负微分电导效应的二维材料主要还是范德华异质结。然而,由于异质结的层间隧穿效率有限,想要实现高峰值电流仍然面临诸多挑战。因此,能产生负微分电导效应的单层二维材料也是有前途的。常州大学徐月华副教授课题组和美国内布拉斯加州立大学林肯分校的 Xiao Cheng Zeng 教授合作,以密度泛函理论结合非平衡格林函数的方法,研究了基于二维 tetrahex-GeC2 器件的电输运特性。该研究结果为基于负微分电导效应构建的器件提供了新选择。 材料结构与性质 tetrahex-GeC2 表现出高各向异性载流子迁移率和热力学稳定性。单层和双层 tetrahex-GeC2 的带隙分别为0.89 eV 和 0.32 eV,两者都属于直接带隙半导体。二维单层 tetrahex-GeC2 沿着 a(b) 方向 4% (-4%) 单轴拉伸(压缩)应变下,带隙可以调控到理想的 1.26 eV (1.32 eV),并且电子(空穴)有效质量保持稳定,约为 0.23 me (0.83 me)。双层tetrahex-GeC2沿着 a(b) 方向 4% (-4%) 单轴拉伸(压缩)应变下,带隙可以调控到 0.75 eV (0.92 eV),而且,在 a 方向 -1% ~ 4% 和 b 方向 -4% ~ 1% 单轴应变范围内,电子有效质量几乎保持不变,大小分别约为 0.19 me 和 […]

QuantumATK在自旋热电子学研究中的应用

Posted · Add Comment

概述 自旋电子学是关于凝聚态物质和器件中的电子自旋和电荷如何耦合输运的。最近活跃的自旋热电子学领域主要关注自旋与热流的相互作用,目标是新发现的物理效应和改进现有热电器件的策略,以便在热传感器和废热回收装置中获得应用。已知的现象要么被归类为金属中的独立电子效应(如自旋相关的塞贝克效应),可以通过两个具有不同热电性质的平行自旋传输通道模型来理解,要么被归类为也存在于绝缘铁磁体中的由自旋波引起的集体效应(如自旋塞贝克效应)。QuantumATK中完善的器件模型、自旋相关以及电声耦合等方面的方法在这类体系和现象研究中有独特优势。 界面电荷转移掺杂对黑磷烯-F4TCNQ纳米器件热电输运性能的影响 利用基于第一性原理的密度泛函理论(DFT)结合非平衡格林函数(NEGF)方法,系统的研究了扶手椅型和锯齿型黑磷纳米带(APNR 和 ZPNR)的热电输运特性,以及 F4TCNQ 分子在其表面的物理吸附。结果表明,APNR/F4TCNQ 体系为 p 型半导体,由于表面电荷从 APNR 转移到 F4TCNQ,APNR 体系的价带边缘移到了费米能级。与纯 APNR 相比,F4TCNQ 吸附的 APNR 的热功率从 270.8 μV/K 增加到 1063 μV/K,这是由于费米能级附近共振能级的出现导致的态密度增加。此外,界面耦合和量子干涉效应显著抑制了A/ZPNR+F4TCNQ 体系的声子热导,室温下,当 μ=−0.5 eV 时,热电优值达 0.72。这项工作为高性能二维有机-无机纳米器件在热电领域的广泛应用提供了可能,也为开发实际应用中的自组装电子器件提供了理论参考。 Dong, Jiwei, Bei Zhang, Shidong Zhang, Yaoxing Sun, and Mengqiu Long. “Effects of interface charge-transfer doping on thermoelectric transport properties of black phosphorene-F4TCNQ nanoscale devices.” […]

膝关节置换模拟

Posted · Add Comment

患者个性化外科手术规划 360 Knee Systems 公司专注为全膝关节置换手术提供创新的技术解决方案。他们与骨科医生通力合作,提供动态、实用、针对患者的规划和模拟解决方案。 借助于 Simpleware 软件,360 Knee Systems 开发了针对患者的术前计划,这些计划依赖于创建患者骨骼几何结构的准确描述,以解决全膝关节置换手术的固有挑战。 特点 获取患者骨骼 CT 扫描结果在 Simpleware 中生成患者骨骼的三维模型进行分析和仿真科技使外科医生能够对患者进行个性化分析,从而优化手术计划和程序基于模拟的输出设计患者的个性化导板 生成3D模型 360 Knee Systems 获取患者髋部、腿部和踝关节骨骼的CT扫描,并将其导入 Simpleware ScanIP 中生成 3D模型,捕捉解剖结构的不同细节,达到了高质量和高细节的水平。然后使用 Simpleware CAD 模块执行基本的 CAD 操作,在患者解剖结构内定位植入物。精确的模型确保了模拟能够真实地进行。 图:Simpleware ScanIP中的膝关节分割 标注 为了能够更轻松地执行可重复性的操作,360 Knee Systems 与 Simpleware 的服务团队合作编写脚本,如优化分割过程和标记扫描的骨骼。在模拟中需要用到标志点创建轴和参考,因此精确的标志点是结构分析的关键。脚本的使用则大大减少了此任务所需的手动工作量。 图:在Simpleware ScanIP中为分割后的膝关节设置标志点 创建规划和导板 外科医生使用在 Simpleware ScanIP 中生成的 3D 模型为患者创建个性化导板。每个导板都是根据该患者的特定骨骼结构量身定做,旨在帮助医生确定合适的手术切口。360 Knee Systems 运用这些模型为膝关节植入物的最佳放置位置提供术前规划,外科医生也可以在术前就熟悉患者的骨骼结构。3D 打印的导板可以用来演示植入物的髌骨、股骨和胫骨组成部分的精确切割位置。 参考信息 致谢和更多信息请参见英文原文:https://www.synopsys.com/simpleware/resources/case-studies/knee-replacement.html

患者复杂主动脉夹层的血流动力学模拟

Posted · Add Comment

概述 对于希望虚拟重现主动脉夹层疑难病例患者主动脉内血流这个目标来说,Simpleware ScanIP 是一个不可或缺的宝贵工具,它不仅能够准确地提取这些患者复杂的主动脉几何结构,而且还提供了重要的形态和功能信息,这对于建模工作流程至关重要。 亮点 开发工作流程实现由非侵入性临床数据获得主动脉夹层的个性化计算流体力学(CFD)模型使用 Simpleware ScanIP 从 CT 图像中提取三个复杂研究个案患者的特定结构使用 ANSYS® CFX 完成 CFD 模拟,提供的血流动力学方面见解可以增强临床认识、支持决策过程。 介绍 主动脉夹层(AD)是一种可危及生命的血管疾病,发病率和死亡率都很高。在 AD 中,主动脉内膜层的撕裂导致血液在血管壁内流动,产生两个或更多流道,真腔(TL)和一个或多个假腔(FL)被内膜皮瓣(IF)隔开。主动脉夹层的形态高度复杂且具有患者特异性,通常由多个IF撕裂表现为曲折的FL与TL相连。这种复杂的环境产生异常的血流动力学应力(如压力和剪切应力),从而驱动疾病演变。目前,成像技术无法准确评估体内血流动力学。然而,临床图像和计算流体动力学(CFD)的结合可以提供重要的预后见解,从而支持这种危及生命疾病的临床决策过程。 工作流程说明 开发主动脉夹层 CFD 模型生成和个性化的工作流程。涉及的步骤: 利用 Simpleware ScanIP 重建患者特定主动脉的 CT 扫描几何结构为模拟特定患者主动脉的血流动力学包络调整 CFD 模型的边界条件在 ANSYS 软件中求解计算模型并进行结果的后处理 借助Simpleware ScanIP进行结构分割 将临床 CT 扫描的 DICOM 文件直接导入 Simpleware ScanIP 中,采用中值滤波处理,降低图像的“椒盐”噪声。对于以主动脉及其主要分支为代表的感兴趣区域,首先采用自动阈值算法(即 floodfill)分割,然后手动细化,以准确描述 IF 及其撕裂。为消除像素伪影,对生成的掩模采用平滑算法,然后通过 Simpleware ScanIP 中的自动工具垂直于脉管中心线裁剪,从而创建 CFD 模型的流入和流出边界。然后将患者特定的主动脉夹层面模型作为建立模型导入 ANSYS®软件。 图:主动脉夹层的分割:(a)CT数据的渲染;(b)平滑后的分割掩模;(c)模拟中使用的三维模型 图:对3个研究案例进行几何重构,箭头表示内膜瓣内撕裂的位置 CFD模型的设置和个性化 CFD […]

 
  • 热激子基TADF分子设计的理论探讨(Materials Advances 2022)近年来TADF过程的研究取得了诸多突破,但要进行更高效率和量子产率的TADF分子设计,还需要更多深入的理论机理上的研究。与传统(冷)TADF一样,基于热激子的TADF材料也可以有效地利用单重态和三重态激子,理论上产生100%的IQE。与冷TADF(从低激发T1到S1)不同,热TADF中的RISC过程发生在高激发三、单重激发态(Tm(m>1)与Sn(n>1))之间。设计满足热激子形成条件的材料,例如低三重态之间能隙足够大,而高激发单-三重态能级间隙足够小,仍然是相当困难的。 印度SRM大学化学系Jesni M Jacob、Mahesh Kumar Ravva近期的研究中,探索、分析了分子设计的基本概念,并通过密度泛函理论建立热TADF分子的结构-性质关系,提出了一种分子设计策略。作者设计了一系列新的热激子机制施主(D)-π-受体(A)型分子,探索了新设计分子的电子特性,以助于设计“热激子”通道OLED材料。由于苯恶嗪(PXZ)和咔唑(CZ)的给电子能力适中,因此选择它们作为给电子单元,而吡嗪单元上的吸电子基团包括H、F和CN被取代为受体单元,使用CN化的萘噻二唑(NZ)和蒽噻二唑(AZ)单元连接供体和受体,设计出十二个D-π-A框架分子。这项研究可以为具有多个热激子通道的有机材料的分子设计方法带来新的见解,从而更好地利用激子。参考文献 Theoretical Insights on Molecular [...]
  • 探究睡眠呼吸暂停【Simpleware应用】概述 理解如何维持气道通畅的基础是咽部被动机械变形对上气道塌陷的作用进行分析。本项研究首先在 Simpleware 软件中使用 CT 扫描数据创建了精细的 3D 解剖模型,然后采用有限元分析(FEA)方法研究变形情况。结果与体内试验及文献报道吻合较好,可以作为更全面地模拟人上气道塌陷和治疗阻塞性睡眠呼吸暂停的起点。 亮点 从 [...]
  • 传感器材料与器件的模拟【QuantumATK亮点文章】基于高导电碳纳米管/聚氨酯复合纤维的可穿戴式应变传感器 高导电性和可伸缩性纤维因其在柔性可穿戴电子设备中的潜在应用而受到越来越多的关注。羧基化碳纳米管(c-CNT)被涂覆在柔性纤维上,作为制造可穿戴式应变传感器的方便方法。然而,由于碳纳米管的石墨化结构在羧化过程中被破坏,碳纳米管的导电性降低。如何让 c-CNT 复合纤维具有高导电性仍然是一个重大挑战。此研究通过在聚氨酯(PU)纤维上涂覆金属离子连接的 c-CNT 来制备高导电纤维,以提高 c-CNT 之间的电子传输速率。由 Fe2+ 离子和羧基形成的金属配位结显著提高了 [...]
  • 增材制造个性化骨增量钛网的工程实现【Simpleware应用】简介 引导骨组织再生(guided bone regeneration,GBR)是一种口腔种植骨增量技术,在骨缺损区利用屏障膜维持空间并阻挡增殖较快的上皮细胞和成纤维细胞长入,保证增殖速度较慢的成骨细胞优势增长而形成骨。随着增材制造(常被称为“3D打印”)技术的发展,可利用计算机辅助设计(computer aided design,CAD)设计出与患者颌骨形态贴合并且具有预期骨增量水平的个性化钛网模型,在激光的作用下通过材料逐层累积将其“打印”出来,最终将这种个性化骨增量钛网用于引导骨组织再生手术。与传统钛网相比,增材制造的个性化骨增量钛网更加贴合骨缺损部位,极大缩短手术时长并降低钛网暴露率,尤其适用于大面积、解剖形态复杂的骨缺损病例。 个性化骨增量钛网工艺研发 对于增材制造个性化骨增量钛网产品,研发工程师与口腔种植科的临床医生和影像科医生组建钛网项目团队,经由主治医生获得患者的影像数据(CBCT产生的“.DICOM”数据)及其对患者预期骨增量的要求,同时主治医生还会提供患者的口内扫描数据、修复体和种植体规划数据等作为钛网设计的参考模型。研发工程师将“.DICOM”数据导入到Simpleware Scan IP软件中进行解剖结构的三维模型重建,包括患者骨缺损处的颌骨、邻牙及牙根、神经管(下颌病例)并将其导出为“.STL”格式的三维模型。使用光敏树脂材料将带邻牙的颌骨模型增材制造出来,用于个性化骨增量钛网的试配。以口腔修复为导向,根据主治医生预期骨增量要求,以及钛网与邻牙、神经等解剖结构的位置关系,同时考虑固定钛网用的钛钉尺寸和位置,设计出钛网的轮廓面。在Solidworks [...]