专业材料与化学模拟平台 AMS2022 发布

Posted · Add Comment

AMS包含全面、完善的计算模拟方法,在原子水平上对分子与团簇、聚合物、低维材料、框架结构材料、多孔材料、宏观流体提供丰富的性质模拟、预测工具。初学者友好的完善图形化操作,可以协助研究者顺利完成建模、计算、作业管理、结果分析、图谱展示。图形化操作界面,支持最新版本的Win、Linux、Mac系统 AMS主要包括分子与团簇第一性原理计算模块ADF,周期结构材料的第一性原理计算模块BAND,反应力场模块ReaxFF,溶解、萃取、蒸馏、共晶等流体热力学模拟模块COSMO-RS(通常需要ADF模块的协助,用于生成分子的coskf文件),工作流与工具集AdvanceWF模块,机器学习势与力场模块ForceField,半经验方法Mopac与DFTB,其中DFTB不仅包含原始dftb.org参数,还包括大量自建参数,覆盖了元素周期表大部分元素。 AMS2022在功能方面的改进 AMS整体算法 AMS提供多种算法驱动,例如分子动力学、巨正则系综蒙特卡洛、Force Bias蒙特卡洛、多尺度模拟、势能面扫描、振动分析等,这些算法,能够灵活调用不同计算模块。 PES Exploration:自动化反应通路搜索算法,使用户能够调用任何计算模块自动探索过渡态和局部能量最小值:过程搜索:找到局域能量最小点,以及它们之间的过渡态搜索初始结构附近的过渡状态Basin hopping寻找局域能量最小值在不同理论水平上,对过渡态和能量最小值点进行精细化计算团簇或表面上的结合位点的确定、可视化案例(使用ReaxFF演示)请点击PES Scan:扫描晶格尺寸、碎片态表面沉积分子动力模拟:用于ALD、CVD、刻蚀模拟,支持气体组分比例定制分子动力学计算均方位移、粘度轨迹回放:对其他轨迹文件,使用指定计算引擎重复其轨迹,并计算相关性质,通常用于比较势能面差异弹性墙壁(纳米反应器):将反应物束缚于纳米球壁内,常在ReaxFF外加电场时使用摩擦学特性(剪切应力):目前只支持命令行模式 ForceField模块 包含Machine Learning Potentials与经典力场GFN-FF、UFF、UFF4MOF、UFF4MOF-II、GAFF、Amber98、Tripos5.2 AdvanceWF模块 ChemTraYzer 2.0:由于ReaxFF自带ChemTraYzer仅适用于小分子化学反应的分析,SCM自行开发了ChemTraYzer 2.0,可用于小分子、大分子、聚合物、非均相等各种类型化学的分析,并能够提供基元反应方程式、反应级数、反应速率常数(采用实验测量单位),并能够对每个反应相关原子演化过程单独显示,以便分析反应轨迹。(详细使用效果请点击)ParAMS:用于训练DFTB参数、ReaxFF力场的图形化工具:将AMS中的计算结果添加到训练集中设定训练集每个样本的权重因子导入样本力场设定需要优化的参数使用CMA-ES优化力场交叉验证生成力场Microkinetics:在从试剂到最终产品的转化过程中,通常涉及许多中间基本反应​步骤。这些基本反应步骤具有各自不同的能垒和反应速率常数,它们的整合决定了整个系统的反应行为。通过微观动力学建模,对这样的系统进行研究,可以得到整体反应速率,以及限制整体反应速率的关键因素。包含如下功能:计算温度范围内的反应速率计算不同产物的选择性确定反应的反应级数和表观活化能计算所有反应步骤的速率控制程度处理均相和异相反应应用充分混合或活塞流反应器模拟程序升温脱附模拟同位素的开关ACE Reaction:自动生成反应网络(测试中)ReactMap:确定化学反应中反应物和产物之间的最佳原子映射OLED模拟工具:OLED器件的多尺度建模、气相沉积、计算薄膜中所有分子的电离势、电子亲和力和偶极矩等特性的分布、将数据传输到 Simbeyond 的Bumblebee代码,用于涉及您的材料的 OLED 设备模拟 ADF模块 极化力场:QM/FQ Quantum Mechanics/Fluctuating Charges非弛豫偶极矩激发态激发态间跃迁偶极矩快速激发光谱计算方法POLTDDFT:扩大到绝大多数元素仅特征值自洽 GW (evGW)、G3W2配体场密度泛函(LFDFT)新功能:ESR g-张量双峰,XMCDMP2考虑自旋轨道耦合 COSMO-RS模块 改进了对多物种流体热力学的处理,例如不同的质子化和解离状态、聚集(使用溶剂)、构象异构体COSMO-RS-PDHS参数:增加了计算带电体系所需的长程静电项(如下图所示) BAND模块 -D4色散修正泛函虚晶近似:允许某些原子位以一定比例掺杂费米面的图形化显示自旋轨道耦合DOS电子能量密度函数周期结构材料的结合能XPS APPLE&P 极化力场模拟,可用于带电体系,如电解质(例如电池中的电荷迁移率)、离子液体类体系的分子动力学模拟,案例参考:离子体系的分子动力学模拟 Zacros & Zacros-post模块 动力学蒙特卡洛模拟 Quantum ESPRESSO模块 更新到7.0版 免费试用 http://www.scm.com/free-trial

庚烷-甲苯-DMF/DEG-KSCN液液平衡体系的COSMO研究(Ind. Eng. Chem. Res. 2021)

Posted · Add Comment

芳烃是石化工业中最重要的一类,由于它们常与脂肪族化合物形成多组分混合物,而它们沸点非常接近,因此分离是一个巨大的挑战,液-液萃取是传统分离过程的一个很好的替代方法。本文获得了庚烷-甲苯-二甲基甲酰胺(DMF)-二甘醇(DEG)体系在硫氰酸钾盐存在和不存在的情况下的液-液平衡数据,并利用COSMO模型研究了离子在DMF-DEG极性混合溶剂中的溶剂化。经验证,溶剂化络合物不能作为描述系统平衡的模型,尽管存在其他预期结果。 作者得到了n-庚烷 + 甲苯 + DMF/DEG 1:3,含/不含5% KSCN混合物在298.15K和大气压下的液液平衡实验数据。与COSMO-SAC模型相比,不同离子溶剂的COSMO-RS计算得到的分配系数与实验结果更接近。超出预料的是,与COSMO-SAC(段活度系数)计算结果相比,COSMO-RS(真实溶剂)计算的未溶剂化离子与实验数据具有更好的近似性,表明系统的物理性质或COSMO模型特征,两者都可能受到HBs的影响,可能是因为π电子与离子电荷的相互作用以及与溶剂的氢键作用。 参考文献: Beatriz Fernanda Bonfim de Souza, Stephanie Lenhare, Stênio Cristaldo Heck*, André Zuber, Stéphani Caroline Beneti, Andréia Fátima Zanette, and Lúcio Cardozo Filho, COSMO Study on the Heptane–Toluene–DMF/DEG-KSCN Liquid–Liquid Equilibrium System, Ind. Eng. Chem. Res. 2021

Cs4PbBr6纳米晶的快速本征发射猝灭(Nano Lett. 2021)

Posted · Add Comment

Cs4PbBr6属于0D金属卤化物家族,具有分离和独立的[PbBr6]4-八面体。在不同的报道中,其纳米晶粒与块体形式,在室温下不发光或发绿色光,对绿色发光的起源或猝灭的机制没有明确一致的结论。要解开这个谜,意大利理工学院(IIT)纳米化学系的研究人员研究了构成该材料的孤立卤化铅八面体部分的电子结构,然后在不同温度下对Cs4PbBr6固态材料的2x2x2超胞进行了从头算分子动力学研究。使用AMS软件ADF模块在DFT(TDDFT)/PBE/DZP理论水平上,对单个八面体性质进行研究,评估了基态和最低激发态几何结构之间的差异,以及自旋轨道耦合(SOC)对能级和电子跃迁的影响,发现激发态的几何弛豫主要是八面体内Pb-Br键的轴向伸长,SOC贡献导致最低激发态的三重态和单重态特征混合,从而导致光学上允许的自旋禁止跃迁,与光致发光的激发和发射光谱一致。 对完整Cs4PbBr6的分子动力学模拟表明,电子与Pb-Br伸展运动相关的声子发生耦合,导致光致发光的猝灭,因此光致发光仅出现在低温下,这与实验数据是一致的。CsBr空位缺陷被认为是绿色发射的主要原因之一,它的加入再次导致了发光的猝灭,因此相互连接的八面体是唯一可能产生绿色发射的缺陷。综上所述,在纯材料中,由于热淬火室温发射被抑制,观察到的绿色发射可能只是导致PbBr6八面体之间互连的结构缺陷的结果,而不是空位或其他点缺陷。 参考文献: U. Petralanda, G. Biffi, S. C. Boehme, D. Baranov, R. Krahne, L. Manna*, and I. Infante, Fast Intrinsic Emission Quenching in Cs4PbBr6 Nanocrystals, Nano Lett. 21, 8619–8626 (2021)

卤化物钙钛矿溶液的理论理解

Posted · Add Comment

溶液合成是制备光电用金属卤化物钙钛矿最常用的方法之一。从溶液中控制钙钛矿的生长对于获得高质量的材料至关重要,这也需要研究者对钙钛矿前驱体化学有深入的了解。事实上,起始材料(盐、溶剂、添加剂)的选择决定了钙钛矿本身的最终形态和结晶度。因此,确定钙钛矿溶液制备过程中形成的溶剂化碘化物(即碘化铅络合物)的构成,对理解溶液与材料性质之间的关联非常重要。尤其是溶剂和添加剂如何影响碘化物平衡,这将使我们在理解这些材料的行为方面得到进一步的认知。 为了达到这个目标,佩鲁贾大学和CNR SCITEC的研究人员开发了一个综合的实验和计算框架,它包括UV/Vis吸收光谱和密度泛函理论(DFT)模拟。静态计算和分子动力学用于揭示溶剂化碘化物模型结构的特性,然后对其进行TDDFT计算,得到包含自旋轨道耦合(SOC)效应的精确其光学行为。 理论和实验吸收光谱之间的极好一致性,让研究人员发现可信的溶剂化钙钛矿物种与配位溶剂。在一系列论文中,报道了二甲亚砜(DMSO)、N,N-二甲基甲酰胺(DMF)[1]和γ-羟基丁酸内酯(GBL)[2]中的钙钛矿溶剂化结构。通过比较实验光谱和计算光谱,还研究了水[3]和PbCl2铅盐前驱体[4]对碘化物平衡的影响。这些研究揭示了钙钛矿前驱体溶液的不同组分如何影响溶剂化复合物的性质,这些组分对钙钛矿的生长方式、形态和最终材料中发现的缺陷类型有直接影响,从而影响其在太阳能电池中的性能。 输入文件下载:*.ams,*.run 参考文献: [1] Radicchi, E.; Mosconi, E.; Elisei, F.; Nunzi, F.; De Angelis, F. Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Appl. Energy Mater. 2019, 2, 3400–3409. [2] Radicchi, E.; Kachmar, A.; Mosconi, E.; Bizzarri, B.; Nunzi, F.; De Angelis, F. Structural and Optical Properties of Solvated PbI2 in γ-Butyrolactone: Insight into […]

基于高效TADF咔唑金树状聚合物制备出溶液加工型OLEDs(Chem. Sci. 2021)

Posted · Add Comment

香港大学化学系分子功能材料研究所,最近首次设计并合成了一类新的含C^C^N配体的咔唑金(III)树状大分子,其固态薄膜的光致发光量子产率高达82%,辐射衰减速率常数高达105 s−1。通过变温发射光谱、时间分辨光致发光衰减和计算研究,发现这些金(III)树状大分子表现出热激活延迟荧光(TADF)性质。并基于这些金(III)树状大分子,制备出溶液加工型有机电致发光二极管(OLED),其最大电流效率为52.6cd A−1,最大外部量子效率为15.8%,高功率效率为41.3 lm W−1。并记录了这些OLED的运行稳定性,基于零代和第二代树状大分子的器件在100 cd m-2下的最大半衰期分别为1305小时、322小时。 为了更深入地了解这些包含三齿配体的金(III)树状大分子的电子结构,以及吸收和发射的起源,作者进行了密度泛函理论(DFT)和TDDFT 计算。对基态、激发态分子结构、激发态,以及参与激发的分子轨道进行了系统性的分析,其中480-520 nm 的激发主要由HOMO → LUMO贡献。HOMO是主要位于咔唑部分的π轨道,而LUMO是主要位于中央苯环和C^C^N配体的吡啶基部分的π*轨道,因此,HOMO → LUMO跃迁可以认定为 LLCT [π(咔唑) → π*(C^C^N)] 跃迁,三种结构的吸收带及其光谱分配与实验结果趋势一致。 为了更深入地了解增加咔唑基单元对环金属化配体电子密度的影响,还计算了三种结构的基态静电势面。显然,由于树状咔唑取代基的吸电子作用,较高代咔唑基树枝的引入,导致更缺电子的吡啶基,这降低了辅助咔唑基N-供体配体上的电子密度,减少了其给电子的能力。咔唑基N-供体配体的供体强度较差,会使金属中心更加缺电子,通过σ效应从C^C^N钳形配体中吸取更多的电子密度。电子富集较少的金属中心对金属 dπ 轨道起到稳定作用,这反过来会导致 π* (C^C^N) 轨道较小程度的不稳定。总体而言,第二种结构的 HOMO-LUMO能隙 (3.04 eV)比第一种 (3.06 eV) 和第三种 (3.09 eV) 的能隙略窄,与实验趋势非常吻合。 为了更深入地了解发射态的性质,使用非限制性PBE0对T1进行了几何结构优化。三种分子的自旋密度主要位于 C^C^N 配体的咔唑基部分、中心苯环和吡啶基部分,从而支持发光态的LLCT [π(咔唑) → π*(C ^C^N)]特性。发射波长采用S0和T1优化几何结构之后的能量差近似,发射波长从第三种分子 (507 nm) 到第一种分子 (530 nm)与第二种分子 (534 nm)显现出红移特点,这与实验中观察到的趋势一致。 为了进一步了解 TADF 过程中涉及的激发态,使用包含Tamm-Dancoff 近似 (TDA) 的 TDDFT 优化了三种分子的S1和T1的几何结构。计算得到三种分子ΔE ST值分别为 0.005、0.006 和 0.004 eV。为了进一步了解第一种分子的的 […]

NMR的剧烈增强方法:PHIP-X(JACS 2021)

Posted · Add Comment

对于许多化学和生物医学应用,如反应监测或体内代谢的实时观测,核磁共振信号通常太弱。德国、俄罗斯多所大学联合研究,发展了一种增强核磁共振信号的新方法:通过质子交换中继的仲氢极化(PHIP-X),这种新方法实现了超50000倍的信号增强。 PHIP获得的极化非常强,通过质子交换实现的极化转移,具有广泛的适用性,PHIP-X将两者优势结合,能够增强1H和13C信号。在技术,已经验证能强烈增强不同醇、水、乳酸、丙酮酸和葡萄糖的核磁共振信号。PHP-X具有如此强和多用途的NMR增强,为核磁共振在化学和生物医学领域的许多潜在应用提供了新的基础。 本文使用AMS中ADF、BAND计算H-H J-coupling等。 参考文献: K. Them et al., Parahydrogen-Induced Polarization Relayed via Proton Exchange, J. Am. Chem. Soc. 143, 13694 (2021)

水相多酸的理论分析

Posted · Add Comment

由于描述所有化学平衡的高度复杂性,多酸在水溶液中的自组装问题,仍然是一个需要研究的课题。实验技术在这一问题的研究上取得了巨大的成功,但还需要更多的努力来促进这些金属氧化物在材料科学中的应用(详见综述)。去年,ICIQ的研究人员开发了一种名为POMSimulator的模拟器,用于描述小钼团簇的水相形态。 为了充分再现钼和钨氧化物的水相形态,今年代码得到进一步扩展,对122种金属氧化物结构进行了优化,并用ADF计算了它们的解析频率。结果被传递给POMSimulator,该模拟器预测了所考虑的所有多金属氧酸盐的平衡常数。理论常数与实验常数呈线性关系,表明ADF的自由能可以直接重新标度。 参考文献: [1] Petrus, E.; Segado, M.; Bo, C. Nucleation Mechanisms and Speciation of Metal Oxide Clusters, Chemical Science 2020, 11, 8448 [2] Petrus, E.; Bo, C. Unlocking Phase Diagrams for Molybdenum and Tungsten Nanoclusters and Prediction of Their Formation Constants, J. Phys. Chem. A 2021, 125, 5212

棒状银超级团簇稳定性和光学性能的理论研究(JACS 2021)

Posted · Add Comment

由一个、两个和三个二十面体Au13单元共顶点组成的具有明确结构的棒状金纳米团簇引起了人们的广泛关注,然而目前尚未有相关多单元银超级团簇及更长的金属超级团簇的报道。南方科技大学许聪俏副研究员与清华大学王泉明教授课题组合作,报道了一例具有明确结构的最长的棒状银超级团簇,其中理论研究通过AMS软件中ADF模块进行量子化学计算,采用PBE泛函和ZORA标量相对论方法进行结构优化及电子结构分析,并且使用含时密度泛函理论模拟团簇的紫外可见吸收光谱及光学性能。 金银团簇中常见的由十三个原子组成的二十面体单元具有8电子构型,且目前发现的由该单元构建的一维共顶点棒状金超级团簇均满足Mingos规则,具有8n个价电子(n为二十面体单元个数)。然而,本研究中发现的由四个Ag13单元构成的棒状Ag61团簇含30个价电子,不满足Mingos规则。理论研究表明,各单元间强的相互作用导致其分子轨道中的强反键轨道失去两个电子而形成空轨道,且与棒状金超级团簇不同,银单元之间,尤其是棒状结构的中间两个单元之间,存在强的电子耦合作用。我们发现,Ag61团簇的稳定性高度依赖于二十面体单元的 8e 电子构型、二十面体单元之间的相互作用以及配体的稳定化作用。此外,该一维棒状银超级团簇的高吸光度主要来源于由二十面体单元构成的银骨架形成的金属轨道与配体轨道之间的电子跃迁,且其强吸收强度由其高纵横比导致的强纵向吸收决定。   参考文献: Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units Shang-Fu Yuan, Cong-Qiao Xu*, Wen-Di Liu, Jing-Xuan Zhang, Jun Li, and Quan-Ming Wang*, Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units, DOI: 10.1021/jacs.1c05283   感谢许聪俏老师课题组供稿

甲基汞中毒机理的第一性原理研究

Posted · Add Comment

甲基汞是一种亲电毒物,被世界卫生组织列为十大主要公共卫生关注物质之一。与生物相关硫醇和硒醇结合、破坏它们的功能,被认为是其毒性的分子基础。然而原子级别的实验研究,例如通过X射线结晶学,相当难以开展。来自Università degli Studi di Padova (意大利) 和 Universidade Federal de Santa Maria (巴西)的学者们,利用AMS的相对论密度泛函理论方法,通过三个步骤研究了甲基汞化学,模拟了甲基汞与硫蛋白和硒蛋白的相互作用和反应性。 1) 使用配体交换反应来模拟结合步骤(图1a),其中目标硒酸盐攻击金属中心,导致载体硫醇盐的置换。能量分解分析(EDA)表明配体交换基本上是分散的SN2@Hg 反应。 2) 通过溶剂辅助质子交换模型研究了甲基汞结合后,硫核还原过氧化物的能力,从而理解甲基汞硫还原过氧化物的速率介于完全质子化和完全去质子化硫之间,产生相应的硫氧化物(图1b和1c)。 3) 最后,研究了金属成键促进硒碳键断裂的机理假设,发现金属将电荷移向硒氧化物的氧的能力,促进了β-消除反应伴随硒碳键断裂,从而导致靶硒蛋白的不可逆抑制(图1d)。 这幅图描绘了毒素从环境(右下)到生物目标(左上)的移动过程,生物目标为一个中毒(黄色)的大脑。 a) 亚硒酸甲汞络合物与硫醇盐的配体交换反应的反应物络合物、过渡态和产物络合物; b) 过氧化氢辅助少量水分子氧化半胱氨酸甲基汞络合物; c) 甲基汞配合物的HOMO和过氧化氢的LUMO,主要参与氧化过程; d) MeHgSec和甲基硒代半胱氨酸(MeSec)的分子静电势图显示,甲基汞结合后,硒功能的氧原子上有较大的负电荷积累。 参考文献: Madabeni, A., Dalla Tiezza, M., Omage, F. B., Nogara, P. A., Bortoli, M., Rocha, J. B. T., and Orian, L. Chalcogen-Mercury Bond Formation and Disruption […]

锰掺杂卤化铅钙钛矿:能量转移机制还是电荷转移机制?(ACS Energy Lett. 2021)

Posted · Add Comment

Mn掺杂的铅卤化铅钙钛矿的掺杂发光寿命长,主体激子量子产率高。沙特阿拉伯国王大学Edoardo Mosconi课题组与意大利技术研究院Filippo De Angelis课题组等,通过对APbX3钙钛矿(X=Cl,Br,I)的DFT计算,研究了Mn掺杂钙钛矿敏化掺杂发光过程中,能量和电荷转移的争议问题。 作者定量地模拟了Mn掺杂钙钛矿在不同电荷和自旋状态下的电子结构,将Mn敏化作为钙钛矿组分的函数,对结构/机理进行了分析。该分析的结果,同时支持能量转移机制和电荷转移机制。后者可能更适合于Mn:CsPbCl3,因为它具有较小的能量势垒,并规避了自旋和轨道方面的限制。在电荷转移的情况下,决定掺杂发光量子产率的一个重要因素是中间氧化物种的能量,而带隙共振可以很好地解释能量转移。这两个方面由钙钛矿主体的带边能量控制,而这又可以被卤化物X所调制。 参考文献: Damiano Ricciarelli, Daniele Meggiolaro, Paola Belanzoni, Asma A. Alothman, Edoardo Mosconi*, and Filippo De Angelis*, Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites, ACS Energy Lett. 2021, 6, XXX, 1869–1878