利用反应力场模拟和同位素示踪法探究焦炭在混合气氛气化中H2O-Char与O2-Char的相互作用(Fuel 2023)

Posted · Add Comment

相关背景 气化是一种在高温下生产合成气的含碳固体燃料热化学转化技术,且污染物排放量非常低,这种技术已经被广泛应用在发电领域。理想单一气氛气化在实际工业中应用很少,大部分是混合气氛气化,在混合气化过程中多种气氛反应之间的相互作用机理尚不明确。燕山大学赵登课题组采取实验和模拟相结合的方式来探究H2O-Char与O2-Char协同作用机理。研究得出在混合气氛下,水蒸气的存在抑制了O2-Char气化,而氧气对H2O-Char气化起到明显的促进作用。在H2O/O2气氛中,混合气氛整体气化反应性是由O2对H2O-Char的作用与H2O对O2-Char的作用叠加共同决定的。 实验研究 本研究首先利用微型流化床和在线质谱仪开展气化实验,研究了单水、单氧和混合气氛下焦炭气化速率,为了剥离Char-H2O气化与Char-O2气化的相互影响,更好地观测到O2和H2O分别对于Char-H2O气化和Char-O2气化的影响,采用氧同位素示踪技术,将混合气氛O2/H2O单独标记,研究Char-H2O气化与Char-O2相互之间的单一影响。利用原位漫反射傅立叶变换红外光谱(DRIFTS)实验,检测混合气氛下Char-H2O/Char-O2反应路径之间的相互影响。 AMS模拟 利用AMS软件ReaxFF模块进行分子动力学模拟进行实验结果验证。首先,从Fidel Castro-Marcano等人通过透射电镜建立的煤焦模型中选取7种多芳烃层(C127H25O2、C115H25NO3、C111H25N2O2、C107H25NO2、C99H24NO3、C94H23NO3、C84H22NO3)。然后将其堆叠在一起,形成初始的焦炭模型C1037H241N10O26。模拟使用的是NVT系综。将焦炭模型定位在周期性盒子中,随机添加小分子,建立3种不同气氛比例的反应系统。为了在所有反应系统中维持相似的压力,系统密度均设定为 0.15 g/cm3。图1是4%O2/20% H2O体系、4%N2/20% H2O体系和4%O2/20% N2体系的模型图。每个反应系统首先在300 K下进行20 ps的弛豫,然后在3500 K下进行1000 ps的ReaxFF MD模拟。采用CHON-2019力场用于描述 Char/O2/H2O 反应体系。 图1 (a) 4%O2/20% H2O体系,(b) 4%N2/20% H2O体系,(c) 4%O2/20% N2体系(焦炭模型中,C:灰色,H:白色,O:红色,N: 蓝色;H2O:以黄色标记整个分子;O2:以青色标记整个分子) 图2表示的是不同气氛下C的转化率和转化速率随时间的变化。在不同气氛下C的转化率可以用公式(1)来描述。由图2可知,在反应初期,混合气氛下C的转化速率大致相当,随着反应的进行,不同混合气氛下C的转化速率开始发生变化。混合气氛(20%H2O + 4%O2)>混合 气氛(20%H2O + 2%O2),说明氧气的加入对于整体的气化性是促进作用。这与前文的气化性试验的规律一致。    其中,X表示C转化率,YCO、YCO2、YC1-4和YZ分别表示CO的数量,CO2的数量,C1-4的数量,总的C原子数。 图2  不同气氛下碳的转化率 在AMS软件输出的数据表格中,对CO和CO2中氧的来源进行标记追踪,通过比较不同来源的产气可以获得Char-H2O与Char-O2反应之间的相互作用。CO中O的来源只有三种,分别来源于Char、H2O、O2。与CO相比,CO2中O的来源较为复杂,分别有H2O+O2、H2O+Char、O2+Char、H2O、O2、Char六种。对比O来源不同的CO与CO2的数量,分析O2-Char和H2O-Char之间的影响。 图3表示的是焦炭在混合气氛下CO与CO2生成曲线。在混合气氛下气化, CO和CO2中的氧产生主要是来源于H2O气化和O2气化。产气CO和CO2只有小部分(<20)来源于焦炭自身。 图3  焦炭在混合气氛下CO与CO2生成(COO2代表氧来源于O2的CO) 由图4a可知,在不同气氛下COO2+COO22的产量整体上是增长的趋势,但是产量差异较大。相比于单氧气氛,水蒸气的加入使得COO2与COO22的产量明显减少。这表明在混合气氛下,水蒸气的存在明显抑制了氧气的气化。与同位素实验所得“水蒸气的存在抑制了氧气的气化”结论相吻合。 图4 不同气氛下COO2+COO22和COH2O+COH2O2的产量随时间的变化 由图4b可知,在不同气氛下COH2O+COH2O2的产量整体上是增长的趋势,产量略有差异。相比于单水蒸气气氛,氧气的加入使得COH2O与COH2O2生成速率更快,产量更高。这表明在混合气氛下,氧气对焦炭-水蒸气气化起到一定的促进作用。 图5  不同气氛下焦炭结构的变化 图5表示的是单氧(20%N2+4%O2)、单水(20%H2O+4%N2)和混合(20%H2O+4%O2)气氛下,焦炭结构的变化情况。 在单氧与单水气氛中焦炭结构均呈现为多个芳香烃片与片之间的连结形成更大的芳香烃结构;而在混合气氛中焦炭结构则表现为芳香烃片未连结、独立存在的结构。说明在混合气氛下,芳香烃片与片之间更难连结形成更大的芳香烃。在混合气氛气化过程中氧气可以抑制由水造成焦炭结构的卷曲,降低焦炭的芳香度,使得焦炭结构呈平面网格结构,增加了焦炭边缘活性位点的数量,从而增强气化反应性。这也与原位实验所得“氧气会破坏芳香环的共轭结构,降低焦炭的芳香度”结论相对应。 通过分子动力学模拟得到焦炭气化反应路径,例如图6表示的是混合气氛气化过程中焦炭边缘气化反应的某一路径。初始反应涉及来源于氧的O与多环芳烃片上的C相连形成六元环(图6a),然后C-O键的断裂形成了C-C=O的支链(图6b),最后来源于水的OH与支链上的C结合,脱离出CO。而该现象在这两种气体反应路径中普遍存在,因此,可以认为在混合气氛中普遍存在同一反应区域的相互作用,氧气易于开环,水再与支链反应。 图6  混合气氛气化过程中焦炭边缘反应路径-1(260 ps ~280ps)(H2O:整个分子用黄色表达,黄色原子都来源与水分子;O2:整个分子用青色表达,青色的原子都来源于氧分子) 在焦炭-H2O/O2混合气氛气化中,O2促进焦炭中的芳香环的裂解,形成了更多的脂肪链状碳,降低焦炭的芳香度,使得由O2形成的O基团和煤焦形成更多的碳氧复合物C(O),从而形成了更多的活性位点,即增加了煤焦表面活性位点的数量,促进了煤焦-H2O的气化反应性。这也与原位实验所得“氧气会破坏芳香环的共轭结构,形成脂肪链状碳”这一结论相对应。 总结 […]

通过基于 Micro-CT 重建的孔隙尺度模型和数值模拟研究泡沫混凝土的渗透特性

Posted · Add Comment

概述 泡沫混凝土主要由水泥浆和使用配制泡沫或专业化学发泡剂产生的较大体积气孔组成,较高的流动性、隔热性、能量吸收以及承受大变形的能力使其在土木工程中越来越受到关注。在大多数的应用中,泡沫混凝土的耐久性是一个不可避免的问题,而渗透性是决定长期耐用性的重要材料特性之一。 本项目提出了一种结合基于 X 射线显微计算机断层扫描(Micro-CT)图像重建技术和 Simpleware 软件研究泡沫混凝土渗透特性的方法。通过 3D 孔隙尺度结构模型讨论影响泡沫混凝土渗透性的主要因素,进一步分析边界条件对渗透率计算结果的影响。 试样制备 泡沫混凝土由 #42.5 普通硅酸盐水泥(OPC)、商业复合发泡剂和自来水组成。设计不同的目标湿密度,水/水泥(w/c)比率恒定为 0.45。圆柱体试样高 70mm,直径为 50mm。 表1:制备试样的特性 图1:不同密度的泡沫混凝土 采用高性能 Micro-CT 扫描设备(Zeiss Xradia 410Versa, Pleasanton, California)对所有试样进行扫描,然后将图像数据导入 Simpleware ScanIP 进行图像处理。 图2:不同密度泡沫混凝土的 2D 切片视图和 3D 重建模型(a)M1(b)M2(c)M3 计算模拟 一般情况下,当模型尺寸比孔隙大 10 倍时,可以忽略尺寸的影响。泡沫混凝土中大部分孔隙的直径小于 1.5 mm。因此,为节省计算时间和资源,裁剪 15×15×15 mm 的立方体模型进行研究。同时考虑到模拟结果的可靠性,选取了三个不同位置的计算模型。 图3:不同密度泡沫混凝土的计算模型(a)M1(b)M2(c)M3 在 Simpleware FE 模块为计算模型生成高质量的四面体网格模型,网格粗糙度设置为 0,沿 Z 方向定义流体的入口压力 20 Pa和出口为开放边界。假设流体仅通过孔隙且不渗透水泥基体,设置侧壁为不渗透边界。在流固界面上施加无滑移条件,假设流体为水。在 Simpleware FLOW 模块进行渗透模拟,计算渗透率。 […]

激光功率对激光粉末床熔融加工 316L 不锈钢缺陷、织构和微观结构的影响

Posted · Add Comment

概述 增材制造(AM,也称 3D 打印)的潜在优势(如复杂几何形状的制造)吸引了汽车、航空航天、国防和医疗行业的广泛关注。激光粉末床熔融(L-PBF)是金属零件制造的技术之一,基于离散堆积的成形理念逐层熔覆沉积制备三维实体样件。L-PBF 具有柔性化程度高、加工速度快、对样品尺寸及形状无限制等特点,关键加工参数包括激光功率、扫描速度、激光束尺寸、层厚度、舱口间距和扫描策略。 L-PBF 的局部连续激光熔化过程会因高热梯度而产生热残余应力,从而导致增材制造零件的破裂、分层和变形。此外,孔隙率也是一个关键问题,特别对于需要高拉伸强度和抗疲劳性的零件。本项目研究了激光功率对激光粉末床熔融 (L-PBF) 加工的 316L 不锈钢(SS)缺陷特征、微观结构发展、组成相和晶体织构的影响。 亮点 在最佳加工制度下,激光功率降低一半时孔隙率增加约 7 倍。随着激光功率的降低,熔池形貌由扁平宽大转变为鱼鳞状。择优取向由强( 200 )织构转变为随机织构。 实验 材料和 L-PBF 处理条件 所用材料为商用气雾化 316L 不锈钢粉末,使用 L-PBF 系统(改进的 AconityLab 设备,Aconity3D)和 400 W 的 Yb 光纤激光器在氩气氛中打印圆柱形样品。在所有其他加工参数保持不变的情况下,分别使用 380 W、320 W、260 W和 200 W 的激光功率打印四个圆柱体。所有样品均采用激光扫描速度 300 mm/s、激光束直径 0.207 mm、标称粉末层厚度 0.06 mm。预估体积能量密度(VED) 为 102、86、70 和 54 J/mm3。 同步辐射X射线成像(sXCT) 在阿贡国家实验室采用高能量、高分辨率 的 sXCT 测量以亚微米分辨率表征打印圆柱体样品的宏观缺陷。原始数据以 HDF […]

真实干燥岩土计算机断层扫描的热导网络模型

Posted · Add Comment

概述 热导率是核废料处理、电缆掩埋、农业和地热能等应用中的关键参数。在浅层地热能系统中,应最大限度地提高通过土壤和灌浆传递热量的速率。无论哪种方式,控制热导率的能力本质上依赖于对引起热流增加或减少的潜在现象的基本理解。对于(饱和)岩土材料,传输模式包括通过颗粒传导、颗粒间接触和间隙相,以及辐射和对流。虽然实验测量可以提供准确的热导率值,但通常无法获得有关这些传递模式的局部微观结构信息。为了解多孔颗粒材料为何表现出一定的热导性,需要获得微观尺度的结构、几何形状和连通性信息。 本研究提出了一种从真实干燥地质材料的高分辨率图像中提取热导网络模型(TCNM)的方法。为进一步证明实用性,分析了一系列具有不同颗粒形状复杂性的材料(包括玻璃珠、渥太华砂、棱角砂和片岩)对零横向应变应力的热响应。 试样 选取 5 种涵盖不同颗粒尺寸分布和颗粒形状的材料,进行显微计算机断层扫描。 表1:所用颗粒材料 玻璃珠试样包含由二氧化硅制成的近球形颗粒,渥太华砂和棱角砂主要由最常见的结晶二氧化硅组成:石英。为便于比较,对渥太华砂进行筛分,受长期侵蚀的渥太华砂比棱角砂颗粒更圆润、光滑。破碎的片岩试样具有最复杂的颗粒形状,由石英和长石矿物组成,其中至少 50% 是板状和细长形状。片岩 B 试样是一种特殊类型的变质岩,还含有云母。 图1:2D(水平)CT 切片(a)玻璃珠(b)渥太华砂(c)棱角砂(d)片岩 A(e)片岩 B 图像处理 使用网络模型表示颗粒和多孔介质的一个关键优势是能够离散地表示组成材料的孔隙、喉道、颗粒和颗粒间接触。使用 Otsu 分割方法将扫描获得的 μCT 图像数据分割为固体和空隙,然后执行分水岭算法。尽管合并了相邻的局部最小值,但在某些情况下也会错误将同一颗粒分离为两个区域。 图2:扫描获得 μCT 图像数据的分割过程(1)图像堆栈(2) 3D 重建(3)分割固体与空隙(4)运用分水岭算法将固体和空隙分别分割为单独的颗粒和孔隙(5)固体空间分水岭中的一些误差 热导网络模型 通过计算颗粒 ID、质心、体积以及与试样顶部和底部边界的相对位置对颗粒分水岭输出进行后处理。如果区域/颗粒与试样的顶部(或底部)边界相交,则该颗粒被识别为入口(或出口)颗粒(橙色点)。接触和临近接触的识别是构建热导网络模型的关键步骤,将直接影响网络架构和产生的热流。在这里,“临近接触”被定义为彼此非常接近的两个颗粒。 图3:热导网络模型(G-TCNM)通过将颗粒表示为节点和由颗粒临近或接触的边连接而构建。(1)G – TCNM的输入:重构灰度图像和两者分水岭(孔隙和颗粒)(2)分水岭图像前处理过程中计算参数和标识符的选择(3)G – TCNM 边缘加权的热导计算总结,区分了接触颗粒和临近颗粒。 标记每个颗粒与任何其他物体接壤的体素,检查邻近的 6 个体素(上、下、左、右、前、后)范围,称为边界体素。使用这种方法,1 到 2 个体素长度的(真实)颗粒间间隙可能会被错误地识别为接触,此类错误接触的热导将受到惩罚。为构建 G-TCNM 网络,每个颗粒首先要被分配一个节点。如果相应的颗粒接触或临近接触,则节点通过网络中的边(链接)连接。为计算通过所得网络的热导率,建立由 Batchelor 和 O’Brien 首创的圆形和球状颗粒组件及填料。 图4:(1)颗粒-孔隙或孔隙-颗粒的连接(橙色箭头),利用这些连接识别临近接触点(紫色虚线)(2)对于边界体素集合中的每个体素,间隙圆柱体的长度等于到另一侧边界体素的最小距离。 结果和讨论 G – TCNM与 FE 模拟和实验测量的比较 按照 […]

短/长节段脊柱后路固定的有限元分析

Posted · Add Comment

概述 近年来,随着微创手术(MIS)和医疗器械包括侵入性较小的螺钉与杆的发展,脊柱后路内固定手术治疗椎体骨折的效果有所改善。 本研究采用 Simpleware 软件基于医学图像和真实的螺钉数据中创建三维有限元脊柱模型。使用 4 种病理模型分析比较病理状态下脊柱屈伸对器械及固定长度的影响,通过比较脊柱后路融合术中的固定长度,辅助确定最佳固定长度。 亮点 利用 Simpleware 软件生成有限元模型测试不同的断裂模型由医学图像和真实的螺钉数据生成 3D 模型通过有限元分析模拟不同的模型组合旨在帮助评估脊柱后路固定的方法 介绍 使用短节段固定治疗椎体骨折有多种潜在的益处和并发症。虽然较短节段固定创伤较小,可以获得更好的结果,但长节段固定可能更有利于矫正前凸和保留节段前凸,而固定长度可能会受到后路固定后邻近节段疾病(ASD)、内固定失效(松动)和手术侵入性考虑的影响。在这种情况下,与主要由骨质疏松和基础疾病引起的骨折患者相比,年轻患者术后并发症的风险较低。 外科医生通常选择不同的固定长度和开放手术或经皮手术,评估是否需要骨移植、前路融合或使用钩和胶布。虽然 MIS 是最合适的,但还是有必要准确地可视化骨质疏松和弥漫性特发性骨质增生(DISH)的固定长度,了解不同临床问题的影响。对病理模型进行有限元(FE)分析,比较后路脊柱融合术中的固定长度有助于确定可选的固定长度。 本研究利用医学图像和真实螺钉创建三维有限元模型,对骨折模型、骨质疏松骨折模型、DISH 骨折模型和DISH -骨质疏松骨折模型进行研究,比较病理状态下脊柱屈伸活动对内固定器械和固定长度的影响。此外,这是第一项使用真实螺钉数据和较长脊柱长度来考虑病理和不同固定长度对术前规划影响的研究。 图2:(A)分割每个椎间盘(B)脊柱模型(C)从 T8 到骶骨的每个椎体、前纵韧带、椎间盘、后纵韧带和黄韧带 模型构建 获取一名 50 岁成年女性从胸椎到骨盆的脊柱 CT 图像,将数据导入 Simpleware 软件进行脊柱的图像处理,椎体分为松质和皮质,同时分割出椎间隙。由于小面关节的尺寸较小,皮质骨和松质骨的分割变得更加困难,需要基于 CT 扫描进行手动操作。 由第 8 胸椎至第 5 腰椎区域的所有椎骨和椎间盘构建 3D 脊柱模型,并为每个椎骨创建各节间可独立移动的小面关节空间。在模型中加入前纵韧带(ALL)、后纵韧带(PLL)和黄韧带。在 Simpleware FE 中生成有限元网格,包含 1,049,711 个单元和 2019,357 个节点。设定所有单元为线弹性材料,为脊柱的每个组成部分添加适当的材料属性。 图3:(A)假设骨折模型位于 T12 的中心,采用楔形模型在 T12 和 ALL 处进行切割(B)在螺钉模型中,去除螺钉头部的连接杆,将直径为 5.5mm 的杆连接到头部(C)将螺钉固定在每个椎骨中 由于胸腰椎骨折是最常见的骨折类型,因此对 […]

基于AMS软件的材料计算化学基础暨分子动力学培训(2023年成都)圆满结束

Posted · Add Comment

AMS (Amsterdam Modeling Suite) 是一款适合计算化学初学者、实验工作者入手的专业的材料与化学模拟平台。包含完善、全面的计算模拟方法。原子水平的模拟方法,包括密度泛函、半经验量子化学、力场,以及多种方法结合的多尺度模拟分子动力学(以及基于分子动力学的FT-IR)、多种蒙特卡洛模拟,以及微观动力学模拟力场、DFTB参数支持自主扩展与优化。友好的图形界面,完成建模、计算、作业管理、结果分析、图谱展示。支持丰富的材料体系与性质分析工具,计算分子与团簇、聚合物、低维材料、框架结构材料、块体材料、宏观流体等多种材料模型,包括电子、结构、化学反应、化学键、谱学、能带、载流子迁移、力学、热力学,以及光的吸收、转换、发射与非线性光学等方面性质。 本培训课程领域涉及:分子与团簇等非周期性体系的DFT计算,周期性体系尤其是二维(例如表面)、一维体系(如聚合物)的DFT计算,通过基于力场的分子动力学、蒙特卡洛模拟化学反应,基于DFT、DFTB、MOPAC、ReaxFF的巨正则系综蒙特卡洛模拟,基于COSMO-RS模型的流体热力学模拟。 培训场次信息: 时间:2023年10月27日(周五)~29日(周日) 09:00 – 18:00地点:四川大学望江校区讲师:AMS中国技术支持 刘俊 培训现场照片 培训活动圆满结束!

利用 Micro-CT 技术快速分析玉米籽粒的饱满度特性

Posted · Add Comment

概述 玉米是全球产量最高的粮食作物,是主要的粮食资源和重要的工业原料。玉米籽粒的品质反映了籽粒产量和品种适应性。玉米籽粒饱满度是衡量玉米产品产量和品质的重要表型性状。玉米籽粒饱满度的定性和定量分析是研究玉米遗传因素、生理过程和改良方法的最重要前提。 传统方法测量籽粒密度等指标耗时且困难,迫切需要简单、快速、可靠的分析方法鉴定玉米的产品品质和育种的种质资源。本研究基于 Micro-CT 技术对玉米籽粒进行三维重建,检测不同类别玉米籽粒之间的解剖差异,通过测量计算籽粒密度、空腔、孔隙度等表型特征及与种子饱满度分级的密切关系。 图像处理 从每个自交系中随机选择两组品质不同的玉米粒 X178 和 W99。随机选择籽粒,然后分别使用 X 射线 Micro-CT 系统(SkyScan 1172,Bruker Corporation)对整个籽粒进行扫描。将图像数据导入 Simpleware 软件进行处理,基于不同部位的灰度值利用阈值、洪水填充和区域生长等工具分割。 胚胎和玻璃体胚乳的灰度值非常接近,在全局 3D 图像上通过“区域生长”分割这两个部分会很困难。因此,打开“区域生长”工具,设置 Number of iteration = 1,Multiplier = 2,Initial neighborhood radius = 1。依次分别应用在合适的 2D 切片上,使用形态学操作 Close 获得胚胎结构,然后通过布尔运算得到胚乳,利用侵蚀工具获得果皮。 图1:在 Simpleware 软件中基于 Micro-CT 3D 图像分割玉米籽粒胚、胚乳和空腔的流程 结果与讨论 玉米粒的 2D 和 3D 图像 在二维切片图像中可观察到,玉米粒由果皮、胚、胚乳和空腔组成,通过 X 射线吸收值的不同可以区分。籽粒中的胚乳有玻璃质和粉质两种类型。与粉质胚乳(较暗)相比,玻璃质胚乳(较亮)更硬,籽粒外部密度更高。由于粉质胚乳中淀粉的压实度较低,存在许多气孔。从明暗对比来看,周围的空气和内部空隙都是黑色,胚胎是明亮的。在所有重复测试中,两组种子的粉质胚乳中均观察到较大的空腔,且在自交系 X178 的种子中更为突出。比较两种玉米种子的 CT 图像,饱满度差异明显。 […]

利用 X 射线 CT 分析高强度焦炭结构

Posted · Add Comment

概述 焦炭是一种多孔材料,在高炉炼铁中可用作还原剂、隔板并提供热量,焦炭强度是支撑铁矿石和使气体通过高炉熔化区的重要物理性质。本项目将利用 X 射线 CT 和 Simpleware 软件实现焦炭微观结构的可视化和量化,研究焦炭孔隙结构对焦炭强度的影响。 亮点 利用 X 射线 CT 扫描获得焦炭微观结构在 Simpleware ScanIP 中对焦炭图像进行分割和结构分析在 Simpleware SOLID 模块进行应力分析 试样制备 采用不同粘结煤成分制备两种焦炭试样:焦炭 A 和焦炭 B。按照强度大小,将焦炭 A 和 B 分别命名为“HS(较高强度)焦炭”和“LS(较低强度)焦炭”。每种焦炭各制备两个样品用于 CT 扫描。 表1:制备焦炭所用粘结煤的特性和配比 表2:焦炭试样的性质 图像处理和模拟 采用 Micro Focus X 射线 CT 系统对焦炭试样进行扫描。将图像数据导入 Simpleware ScanIP 进行处理,利用阈值工具基于灰度值将焦炭结构分割为孔隙、基体和高密度基体。 图1:焦炭试样的图像处理过程 在 Simpleware SOLID 模块进行应力分析,去除孔隙部分,为基体和高密度基体结构生成 350 万个网格单元。通过沿单轴 z 方向均匀移动表面施加拉伸,其他两个轴向保持自由。为简化分析,界面使用共享节点。 图2:Mises 应力可视化分析的计算方案 结果与讨论 焦炭结构 焦炭试样的体素图像和成分组成如下所示,HS 焦炭具有较低的孔隙率和较高的基体占比。 图3:焦炭试样的体素图像 表3:焦炭成分分析结果 孔径分布及孔隙形状参数分析 使用比表面积测量仪获得孔径分布,HS 焦炭和 LS 焦炭试样几乎没有差异,主要孔径为 100-150 μm。 图4:焦炭试样的孔径分布结果 在 Simpleware 中进行结构分析获得焦炭试样的孔隙球形度分布,垂直柱表示对应的孔隙数量。 图5:焦炭试样孔隙的球形度分布 应力分析 […]

氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附的DFT模拟(Surfaces and Interfaces. 2023)

Posted · Add Comment

近日,南京工业大学的杨晓宁教授团队在国际期刊Surfaces and Interfaces发表了一篇题为DFT simulation of structure stability and nitrogen oxide adsorption for nitrogen and oxygen co-modified carbon nanotubes的文章,使用DFT研究了氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附。 摘要: 氮(N)和氧(O)共修饰碳纳米管(ON-CNTs)在吸附和催化过程中具有潜在的应用前景,因为含氧基团和N掺杂原子可以提供丰富的表面结合位点。然而,它们在不同共改性水平下的结构稳定性和吸附相互作用仍有待探索。作者首次采用密度泛函理论方法定量表征了一系列ON-CNTs的结构形貌和热力学稳定性。对ON-CNTs与氮氧化物(NO和NO2)之间的相互作用能和电子机制进行了全面调查。该仿真结果对改性碳纳米管的设计和应用具有重要价值。 计算方法: 本研究中所有的DFT计算均使用AMS软件的BAND模块。基于广义梯度近似(GGA)的Becke-Perdew (BP86)泛函与Grimme等引入的经验弥散校正(-D3),用于所有ON-CNTs的几何优化和单点计算。所有的计算都是在真空中使用TZP基组进行的。在几何优化中,能量收敛为10-5 Hartree,能量梯度收敛为10-3 Hartree/Å,步长收敛为10-3 Å。 图1. 三种典型的ON-CNTs的静电势图(ESP) 作者模拟了ON -CNTs的表面静电势(ESP),这是表征表面相互作用位点的重要特性。如图1所示,ON -CNTs表面骨架的ESPs以正为主,负ESP值一般在官能团氧原子附近,而官能团的H原子表现出正ESP值。随着共修饰程度的增加,掺杂N原子的存在可以更积极地增强表面ESP。因此,共修饰对ON-CNT电荷分布有影响,为与外部分子的吸附提供了多个相互作用的位点。 图2. NO分子在ON-CNTs表明的AIM和NCI分析 为了理解NO/NO2分子与ON-CNTs结构之间的相互作用机制,作者采用了AIM和NCI方法分析了几种典型吸附配合物之间的相互作用,如图2所示。NO分子与CNT-N20O30表面结合时,存在着非共价相互作用和共价键共存的丰富而复杂的相互作用模式。随着N和O共改性水平的提高,NO与ON-CNTs之间的相互作用增强,同时吸附状态可以由物理吸附转变为化学吸附。 图3. 三种典型吸附配合物的投影态密度分析(PDOS) 图3显示了具有最强吸附位点的三种典型NO/ ON-CNTs吸附配合物的投影态密度(PDOS)。与分离的NO分子相比,吸附在CNT-N10O10上的NO分子的2P轨道峰在费米能级附近减小(图3a)。同时,在0.12 eV时,CNT-N10O10分子与NO分子之间的轨道仅出现轻微重叠,说明NO/CNT-N10O10体系内部的相互作用较弱,这与吸附体系中唯一的vdW相互作用一致。NO/CNT-N20O20内部的相互作用(图3b)对NO分子的PDOS有显著影响。NO分子被吸附后,原费米能级附近的2P轨道峰消失,在- 1.51 eV和1.55 eV处出现新的峰,分别与H116和H111的S轨道有明显重叠,导致CNT-N20O20与NO分子发生强结合。这也解释了CNT-N20O20体系中强烈的非共价相互作用。 图4. 两种气体分子对T和P的吸附自由能(ΔG)二维图 图4为两种气体分子对T和P的吸附自由能(ΔG)二维图。随着T的减小和P的增大,吸附自由能呈下降趋势。改性碳纳米管表面对氮氧化物气体的吸附是热力学自发的,在实际条件下是有利的。 总结: 本文利用AMS软件的BAND模块,进行了氮氧共修饰碳纳米管结构稳定性和氮氧化物吸附的DFT模拟研究。研究发现,当N掺杂浓度低于30%,氧化水平低于50%时,ON-CNTs一般可以保持稳定的形貌,而不会出现明显的结构破坏。表面氧化程度是决定相互作用的主要因素,氧化程度在20 ~ 40%时可以产生强相互作用能。与NO2分子相比,NO分子与ON-CNTs的表面相互作用更大。电子水平的AIM、NCI和PDOS分析进一步揭示了各种相互作用机制。NO分子与ON-CNTs之间的强相互作用主要归因于化学共价相互作用。NO2分子的相互作用是由HB和vdW机制驱动的。进一步的吸附自由能结果表明,共改性碳纳米管表面对氮氧化物气体的吸附是热力学自发的,在实际条件下是有利的,使其成为一种有前途的氮氧化物捕获纳米材料。该模拟结果不仅揭示了表面相互作用的机理,而且为ON-CNTs的设计提供了指导和应用潜力。 参考文献: Yan Chen, Jintao Han, Xiaoning Yang, DFT simulation of structure […]

离子液体捕获可冷凝气体(Chem. Rev. 2023)

Posted · Add Comment

摘要 可冷凝气体是在大气压和室温下以气态形式排放到大气中的可冷凝和挥发性蒸汽或有机化合物(包括水蒸气)的总和。石化、化工、包装印刷、工业涂料、矿山开采活动排放的可冷凝有毒有害气体严重污染大气环境,危害人体健康。但这些气体又是必需的化学原料。因此,开发绿色高效的捕集技术对高效利用凝析气资源具有重要意义。为了克服传统有机溶剂和碱吸收方法中存在的污染和腐蚀问题,被称为“液体分子筛”的离子液体因其优异的分离和再生性能而受到前所未有的关注,并逐渐成为学者们用来取代传统吸收剂的绿色溶剂。 图1 离子液体的各种应用 近日,石河子大学和北京化工大学的雷志刚教授团队在化学与化工领域的顶级评论期刊 Chemical Reviews发表了一篇题为 Condensable Gases Capture with Ionic Liquids 的文章,介绍了预测分子热力学模型在离子液体捕获可冷凝气体领域的应用。 本文综述了离子液体在凝析气分离中的研究进展。作为化学工程的基础,本文首先详细讨论了预测分子热力学的起源及其在理论和工业中的广泛应用。随后,本文重点介绍了离子液体在捕获几种重要的典型可冷凝气体方面的最新研究成果,包括水蒸气、芳香族挥发性有机物(即 BTEX)、氯化挥发性有机物、氟化制冷剂气体、低碳醇、酮、醚、酯蒸气等。使用纯离子液体、混合离子液体,以及作为吸收剂的IL+有机溶剂混合物也简要扩展了负载有作为吸附剂的IL的多孔材料的相关报道。最后,对该领域的发展前景和研究方向进行了展望。 雷志刚教授团队开发的 ADF Lei 2018 和 COSMO-UNIFAC 模型已嵌入大型商业软件化学与材料软件 AMS 的 COSMO-RS 模块中,并广泛应用于含离子液体系统的气体分离领域。该综述提供了集成于 AMS 软件中的 ADF Lei 2018 版本的 COSMO-RS 的相关参数,如表 1 所示。 AMS 软件提供的热力学模型窗口界面如下图所示: 结语 由于它们的广泛应用和在上述领域的一些著名代表,预测型分子热力学已在化学工程中成立。预测型分子热力学未来的发展和研究方向: 尽管预测分子热力学模型适用于溶剂-聚合物系统,但据我们所知,到目前为止,还没有包括含有聚离子的系统;值得注意的是,离子液体可以用作电池电解质,但离子液体与其他化合物在电场条件下的相互作用在分子水平上仍不清楚。预测分子热力学可以为液体结构的细节提供理论见解。预测分子热力学尚未扩展到核工业中遇到的同位素蒸馏分离(即 H2O−D2O−T2O 分离);预测分子热力学尚未扩展到去除高纯度湿电子化学品制备过程中遇到的金属离子(例如,在电子级NMP 的生产过程中需要去除至少20个金属离子);预测分子热力学从不排除实验工作,而是将实验、计算和理论分析紧密结合在一起。换句话说,它们为实验提供了理论和建模支持,实验反过来验证了它们的适用性。因此,仍然需要有限数量的实验工作。 参考文献: Guoxuan Li; Kai Chen; Zhigang Lei; Zhong Wei. Condensable […]

 
  • 双离子型重氮族亚胺在氧化还原催化中的突破一、研究背景 过渡金属因其可变价和d轨道特性长期主导氧化还原催化,而主族元素因缺乏d轨道,一度被认为活性有限。但近年研究发现,15族元素(Pn = P As Sb Bi)的低价化合物,尤其是锑和铋,凭借孤对电子的特殊性质,也能表现出类似过渡金属的反应模式。已有低价重氮族化合物虽能实现小分子活化,却受限于配体刚性大、可调性不足、副反应较多,难以进一步拓展。为解决这一问题,英国帝国理工学院、伦敦玛丽女王大学与德国萨尔大学团队合作,设计了一类前所未有的双离子型(zwitterionic)重氮族化合物。其核心创新在于引入双 (NHC) 硼酸盐配体,既带有阴离子电荷,又具强 σ [...]
  • 低维电子材料与器件合集(四)电场和应变作用下 MoSSe/Borophene 异质结的可调谐肖特基势垒 通过第一性原理计算研究 Janus MoSSe/Borophene 异质结的电子性质。不同硼烯结构的 MoSSe/Borophene 异质结表现出不同的电子性质。所有异质结均呈现 p 型肖特基接触,电场和应变可以调制 MoSSe/Borophene 异质结的电子特性。随着外加电场的变化,带隙也会发生变化,从而实现欧姆接触。此外,应变引起 Janus MoSSe 从直接带隙到间接的带隙跃迁和接触类型的改变。结果表明,Janus MoSSe/Borophene 异质结的可调电子特性使其成为一种很有前途的电子器件候选材料。(Chemical Physics 2024 576: [...]
  • 锌离子导电 MOF 界面层助力高稳定性水系锌电池研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo [...]
  • 基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •