新冠病毒原始株、德尔塔和奥密克戎变异株刺突与人ACE2受体的结合能【QuantumATK应用】

Posted · Add Comment

摘要 新冠病毒 SARS-CoV-2 的受体结合区域(RBD)与人 ACE2 受体结合导致感染。在这项研究中,通过密度泛函理论(DFT)模拟研究了原始毒株、德尔塔和奥密克戎变异株的 SARS-CoV-2 刺突 RBD 与人 ACE2 受体连接形成的复合物,获得了二者之间的结合能。原始毒株、德尔塔和奥密克戎变异株的 SARS-CoV-2 刺突 RBD 与人 ACE2 受体的结合能计算值分别为 −4.76、−6.68 和 −11.77 eV。这些结合能值表明,奥密克戎变异株与 ACE2 的结合比原始毒株和德尔塔变异株的结合有利得多,这可能从分子水平上解释了奥密克戎变异株能取代原始毒株和德尔塔变异株成为流行毒株的原因。本研究中发现的结合能和这些能量的分解有望有助于中和药物的开发。 模型 作者从公开的蛋白质数据库中获得了三种毒株的刺突与受体的冷冻电镜结构数据,并在刺突蛋白与受体接触面附近 15 埃范围内选择了合适的分子大小作为计算模型。结合体的原子数在 3000 以上。 图:三种毒株的刺突受体结合域与人ACE2受体的结合界面结构。(a)原始毒株(b)德尔塔变异株;(c)奥密克戎变异株。 表:区域选择后的模型原子数。 计算与结果 作者对结构进行了基本的优化后,计算了体系能量,计算能量时考虑了基组重叠误差(BSSE)和范德华力泛函校正。计算结果表面,奥密克戎毒株的刺突蛋白具有最大的受体结合能,这与实际观察到的传播能力的表现一致。 参考 Yamacli, S., Avci, M., Computation of the Binding Energies between Human ACE2 and Spike RBDs of the Original Strain, Delta and Omicron Variants […]

基于3D图像和仿真应对电池设计挑战

Posted · Add Comment

锂离子和其他类型的电池对许多应用都至关重要,制造商需要创新采用更轻、更持久、更安全的能源技术满足消费者的需求。电池的改进有助于推动从智能手机到电动汽车的未来技术,Simpleware 软件可以帮助研究人员通过三维图像建模、工业CT和其他类型的数据应对这些挑战。 图:AAA电池的Micro-CT扫描 基于3D图像和仿真优化电池性能 利用micro-CT和FIB-SEM等3D成像技术扫描电池,获得其独特的结构。根据这些数据,可以在微纳尺度分析离子分布、不同材料间的相互作用和孔隙率等特性,研究电池性能并识别缺陷,从而改进设计决策。 Simpleware提供的软件环境能够可视化、处理、分析电池图像数据,导出可用于模拟的有限元网格和3D打印文件。该软件可为用户提供许多关键优势: 创建复杂材料几何结构的详细模型,探索对性能的影响;通过计算模拟测试的途径作为补充,潜在地减少对昂贵实验测试的依赖;用户界面友好,可生成直接用于仿真的严密网格;依据工作流程的自定义设置和脚本选项。 Simpleware软件在电池建模中的一些常见应用包括: 电池内部结构的可视化图像的统计分析,如孔隙率创建用于仿真的高质量FE / CFD网格通过设计件与制造件的偏差分析识别缺陷有效材料性质(刚度、渗透率等)的计算 案例:AAA电池 图:Simpleware软件中AAA电池数据的分割 通过查看从标准现成的AAA电池中提取的信息,我们可以了解到Simpleware软件如何帮助处理电池的3D图像数据,本例为在Simpleware软件中处理由Micro Photonics提供AAA电池的micro-CT数据。使用不同技术获得的各种信息,如: 导入和可视化未经处理的2D和3D图像数据,通过将灰度信息映射为彩色和不透明度进行3D渲染,使用聚焦对比度突出感兴趣的特征。自动和手动的分割方式识别特征,包括阈值、Flood Fill、区域生长和Otsu操作,使用形态学、平滑和局部校正滤波器提升分割质量。采用Simpleware的局部校正滤波器处理大规模数据集,如电池这样的数据。先大幅缩减取样的扫描进行粗略分割,然后再转换为对全分辨率扫描应用滤波器。这样可以进行快速的初始处理,同时通过考虑灰度变化以减少射束硬化伪影的影响。获取测量数据,包括点/距离/角度、体积统计和中心线分析,以及面向对象的边界框、壁厚分析、原始形状自动拟合等高级测量选项。 图:在Simpleware软件中对AAA电池数据进行的一些测量和统计 在Simpleware软件中处理电池数据时,更重要的功能之一是用于质量控制的数据集配准和表面对比。任何类型的数据都可以使用手动标注和自动的方法进行对齐和比较,比如图像对图像、CAD对图像、CAD对CAD。 图:Simpleware软件中的数据集配准:扫描分割出的电池集电器与理想集电器CAD模型的对比(左);配准表面的偏差分析(右) 该项技术能够可视化表面偏差、统计信息和原始数据,从而研究电池的CAD设计与传统制造或增材制造版本的不同,以及将如何影响性能。 视频:Simpleware软件中AAA电池的可视化与分割 用户成功案例 其他Simpleware软件应用于电池建模的一些案例,包括滑铁卢大学、阿克伦大学、卡耐基梅隆大学、印第安纳大学和普渡大学的研究,如锂离子电池异质微观结构的分析。这项应用研究了锂离子电池LiFePo4电极的微观结构,由nano-CT重建模型,导出到COMSOL Multiphysics模拟不同放电速率下的阴极性能。通过这项工作,研究人员可以更好地了解锂离子在电池电极真实微观结构中的空间分布如何影响性能。 视频:在Simpleware ScanIP中由nano-CT数据重建锂离子电池 关于使用Simpleware软件的其他项目,如帝国理工学院和伦敦大学学院开展固体氧化物燃料电池寿命与降解方面的工作,研究电池在纳米和微观尺度上与热、电化学和应力因素的关系。Simpleware软件为处理图像数据和导出用于仿真的网格模型提供解决方案,使研究人员能够探索不同尺度下燃料电池的寿命和降解,表征不同阶段主应力和界面。 参与该项目的Farid Tariq博士描述了Simpleware Software如何“成为工作流程的一部分,提供了可能难以通过实验测量获得一些结果的见解,这些可能就是性能退化的来源及微结构优化的目标区域”。 图:固体氧化物燃料电池的三维重建:绿色的孔隙和透明的陶瓷 鉴于采用成像捕获电池具体细节这项技术的潜力以及运算能力的增长有助于实现更真实的模拟,这些工作流程对电池行业只会越来越重要。 参考 致谢和更多信息参考英文原文:https://www.synopsys.com/simpleware/news-and-events/battery-modeling-solutions.html

Simpleware自动化解决方案助力药物递送的微结构透皮系统研发【应用领域新闻】

Posted · Add Comment

Kindeva 与 Synopsys 开展合作 2022 年 6 月 Kindeva 药物递送公司(简称Kindeva)宣布与 Synopsys 公司合作,利用 Simpleware 软件的自动化解决方案,协助创建一个能够准确测量 Kindeva 微结构透皮系统(MTS)阵列的最先进系统。 此次合作将利用Simpleware图像处理和基于机器学习的人工智能(AI)技术,实现快速准确测量Kindeva的MTS阵列。借助于这个定制化的软件,Kindeva 将能够采用更有效的方式分析计算机断层扫描(CT)图像。之前通过传统方式测量Kindeva阵列微针和涂层几何属性是一个耗时且技术上非常复杂的过程。 Kindeva是一家全球性的合同定制研发生产机构(CDMO),微针平台开发领域的国际领先者。Kindeva 已将微针递送系统带入第III阶段开发状态,并持续改进制造工艺,以达到客户和患者所需的质量和效率。 “通过使用 Simpleware 软件,Kindeva 将能够在几分钟内完成以前需要几天才能完成的工作,它的能力确实令人惊讶。以往我们必须手动测量阵列的各组数据,甚至要依靠统计计算获取每个阵列的整体测量值。现在我们可以通过测量获得所有的数据,不再需要统计概率计算,大大提高了质量和整体速度。”Kindeva研发副总裁 Raj Khankari 评价道。 Synopsys 的工程副总裁 Terry Ma 说“在由 AI 技术支持的 Simpleware 定制化模块帮助下,Kindeva 基于 CT的自动化检测工作流程可以有效地扩大规模。我们的解决方案将确保提供一致的高质量、高准确性和可重复性,减少在手动重复性任务上的耗时,并加快新入职工程师的培训过程。我们非常期待与 Kindeva 之后的合作,进一步深化伙伴关系,为客户带来更高的价值。” 关于 Kindeva 药物递送公司 Kindeva 药物递送公司总部位于美国明尼苏达州,全球拥有约 1000 名员工。在明尼苏达州伍德伯里、加利福尼亚州北岭以及英国拉夫堡和克利瑟罗都设有重要的研发和生产基地。Kindeva 为客户提供从配方、产品研发到商业生产完整过程中的独有技术和优质服务。Kindeva 专注于复杂的药物项目,其目前的产品涵盖吸入、透皮、微针透皮系统和连接药物递送。 参考 原文与更多信息请参考:https://www.kindevadd.com/news/kindeva-drug-delivery-announces-collaboration-with-synopsys/

通过新颖的颅外皮层刺激技术进行微创神经调节【Simpleware应用】

Posted · Add Comment

概述 颅外皮层刺激(ECS)是一种新型神经调节技术,优点是以微创的方式向大脑传递强电场。为了展示它的潜力,计算模型在评估软组织内电场的研究中不可或缺。鲁汶大学的研究人员使用Simpleware软件创建了一个植入ECS电极的真实人体头部模型,并生成四面体网格模型,然后将其导出至仿真软件(COMSOL Multiphysics)进行模拟。Simpleware软件的一个重要特点是能够在感兴趣区域(ROI)生成致密的高质量网格,从而以低成本高效益的方式产生准确的结果。该项目成果已发表在《神经科学前沿》。 亮点 颅外皮层刺激被认为能够在大脑中引发强电场在Simpleware ScanIP中创建植入ECS电极的真实人体头部模型在Simpleware FE中对ROI生成高密度的四面体网格将网格模型导出至COMSOL Multiphysics仿真结果表明ECS可以向大脑传递强电场 介绍 皮层刺激技术已被证明可以有效治疗不同病理和精神疾病,包括侵入式和非侵入式的方法。就前者而言,直接皮层电刺激(DCS)需要通过开颅手术将电极直接放置在大脑上。DCS能够产生强烈的神经调节作用,但患者面临着较高的风险。相比之下,经颅电刺激(tES)是一种非侵入式的神经调节技术,附着在头皮上的电极之间传递较弱的电流更为安全。 鲁汶大学的研究人员开发了一种新颖的微创神经调节技术 – – 颅外皮层刺激(ECS),通过将刺激电极直接放置在皮下颅骨上,进而提高治疗效果。该项目研究了ECS向大脑传递强电场的潜力,使用计算模型评估ECS期间感应皮层电场,并与tES和DCS进行比较。为此,他们使用Simpleware软件生成包含所需电极的高质量人体头部模型,然后导出至COMSOL Multiphysics模拟电场分布。 人体头部建模 为了生成人体头部模型,将详细模型MIDA(Iacono et al., 2015)导入Simpleware ScanIP。该模型由115个面网格组成,代表着从头部扫描中分割出的不同组织。使用Simpleware CAD模块将面网格转换为基于图像的掩膜,然后合并形成感兴趣的5个主要掩膜:皮肤、颅骨、脑脊液、灰质、白质,以及空气。这些掩膜显示导入的表面之间有一些跟实际情况不一致的现象,比如间隙,即两个相邻代表组织的掩膜之间出现了空的体素。这些缺陷是不真实的,还可能会影响网格的生成。利用Simpleware ScanIP中的图像处理工具可以填充孔洞,修正这种情况。 图:人体头部模型矢状位视图(在Simpleware ScanIP中获取)的截图清晰地展示了不同颜色区分的分割组织:皮肤(橙色)、颅骨(淡黄色)、脑脊液(蓝色)、灰质(深灰色)、白质(浅灰色)和空气(黑色)。 电极建模 所述ECS电极由中心圆盘、环形电极以及防止电流通过皮肤的绝缘背层组成。首先通过使用Simpleware 3D编辑工具扩张皮肤掩膜的副本创建电极层,然后应用布尔运算工具保持掩膜部分与皮肤相交。 生成电极层后,在此基础上创建一个具有特定半径、方向和位置的圆柱形掩膜,将它与电极层交叉的部分定义为中心圆盘。同样地,环形电极是通过两个半径分别为环形内缘和外缘的圆盘电极相减获得。为了模拟绝缘背层,同样采用了类似生成电极的方法,确保各层覆盖到了所有电极以防止与皮肤直接接触。 图:植入电极后的人体头部模型。左:矢状位视图(在Simpleware ScanIP中获取),中心圆盘和环形电极呈红色,绝缘层呈绿色。右图:Simpleware ScanIP中3D视图的截图,对皮肤和绝缘层设置了较高的透明度,可以更好地展示颅骨上的电极。 生成四面体网格 在创建了人体头部和电极的模型后,在Simpleware FE模块中生成四面体网格。为了得到更精确的模拟结果,在电极周围区域增加了四面体网格的单元数量。这是一个非常有用的功能,在保持合理网格数量和模拟时间的同时,提高了模型结果的准确性。 图:在Simpleware FE中生成的人体头部多部分体积网格模型,包括:白质、灰质、脊髓液、颅骨、电极组件、软组织和空气。 模拟和结果 将四面体网格模型导入COMSOL Multiphysics,设置边界条件,通过求解Laplace方程计算电场。结果表明,ECS期间产生的电场是tES产生电场的20倍以上,感应皮层电场的强度和焦距取决于电极尺寸和中心电极与环形电极之间的距离。 图:同样施加1 mA电流时,COMSOL仿真结果显示ECS(左)和tES(右)期间的电场分布(请注意刻度的范围)。从图中可以看出,与tES相比,ECS期间的电场强度更强、更集中。 结论 颅外皮层刺激(ECS)是一种新型的微创神经调控技术,能够产生较强的皮层电场,已由Simpleware软件和COMSOL Multiphysics生成的计算模型证实。该技术可应用于刺激不同的皮层区域,治疗多种神经和心理疾病。研究结果表明,电极的配置会影响大脑中的电场强度和聚焦。为了避免不必要的副作用并实现最佳治疗效果,未来的计算研究应侧重于优化电极设计,达到只针对特定皮层区域而不刺激其他部位的目的。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/epicranial-cortical-stimulation.htmlKhatoun, A., Asamoah, B., Mc Laughlin, M., 2018. Investigating the Feasibility of […]

基于单层氧化镓的高性能低功率 MOSFET 的性能研究

Posted · Add Comment

摘要 研究者在密度泛函理论(DFT)和非平衡格林函数(NEGF)理论的框架下,模拟了单层(ML) $\mathrm{Ga}_2 \mathrm{O}_3$的电子性质和 ML- $\mathrm{Ga}_2 \mathrm{O}_3$ 基 n 型金属氧化物半导体场效应晶体管(MOSFET)的输运性质。结果表明,ML $\mathrm{Ga}_2 \mathrm{O}_3$ 具有 4.92eV 的准直接带隙。在充分考虑声子散射的情况下,计算得到 x 和 y 方向的电子迁移率分别为 1210 和 816 $\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$(300K) 。电子—声子散射机制表现出温度依赖性行为,声学模在 300K 以下占主导地位,光学模在 300K 以上占主导地位。在$\mathrm{L}_g$= 5 nm 的栅极长度下,用于高性能(HP)应用的 ML $\mathrm{Ga}_2 \mathrm{O}_3$ n-MOSFET 的导通电流为 2890 μA/μm,高于已有报道的二维材料的导通电流。ML $\mathrm{Ga}_2 \mathrm{O}_3$ MOSFET 的延迟时间和功率延迟积可以满足最新的国际半导体技术路线图(ITRS)对HP和低功率(LP)应用的要求,$\mathrm{L}_g$ 可以小于 4 或 5 nm。通过优化 Underlap 结构和掺杂策略,ML $\mathrm{Ga}_2 \mathrm{O}_3$ n-MOSFET 可以进一步满足 1 nm 的 ITRS 要求。最后,将基于 ML […]

结合增材制造、模拟、CT检测和试验优化设计TPMS换热器

Posted · Add Comment

概述 六家行业领导者(nTopology、Ansys、EOS、Stress Engineering Services、North Star Imaging 和Synopsys)接受高难度挑战,利用各自公司的先进技术,开发了一套创新设计换热器的解决方案。 该项目旨在提升换热器能效和系统性能的同时,使用更少材料,占用更小空间。并将设计、模拟、CT 检测、试验结合起来,有利于对这款新颖的高成本产品进行质量控制。最终的模型设计实现了减少零件、降低压降、增加传热的预期。 亮点 为改善体积受限应用中的性能而重新设计换热器首次尝试即可成功打印部件运用扫描、检测和模拟技术比较设计件和制造件的性能零破坏的完整 NDE 检测实物测试验证传热和强度分析 设计过程 大多数新型换热器的应用都受到空间限制,随着热量的增加要求更小的空间和更高效设计。然而,在常见的换热器设计中创新相对较少,一般是低效的管壳式几何结构。通过采用隐式几何结构,换热器复杂的曲面设计可以使其在性能方面有显著地提高。 该项目见证了 nTopology 和 Ansys 合作生成和模拟换热器的创新型设计。nTopology 使用隐式几何技术创建三周期极小曲面(TPMS),因其平滑的拓扑结构在流体动力学中对换热器非常有利。此外,TPMS设计隔离了两个区域(热和冷),并且具有较高的强度重量比,使它们成为轻量化的理想选择。 图:采用 TPMS 几何结构重新设计的换热器比传统设计要小得多,实现了零件从 40 个减少到只有一个,总重减少了 81 % 对于重新设计,nTopology 定义了一个填充 TPMS 几何结构的换热器,实现了将零件数量从 40 减少到只有一个,总重减少了 81%。创建多个不同的设计方案,在 Ansys 软件中测试。先使用 Ansys Discovery Live 在不同的设计迭代中进行实时的流体流动模拟,再用 Ansys Fluent CFD 仿真对比传统换热器设计和TPMS 换热器的性能。研究结果令人印象深刻,体积减少 85%,单位体积传热增长 11.7 倍,单位质量传热增加 9.4 倍。 图:紧凑型换热器设计的验证结果 Ansys 利用仿真工具从设计上优化构建过程,评估了如最佳取向、自定义的支撑结构设计和其他输入等因素,从而帮助降低对打印效果的风险,并最大限度地缩短构建时间。Ansys 软件中的工艺仿真也有助于预测变形、孔隙率和微观结构,以及所选 […]

预防性骶骨敷料的多层结构设计模拟【Simpleware应用】

Posted · Add Comment

概述 骶骨是仰卧时发生压力性损伤(PIs)包括深部组织损伤的最敏感部位。预防性敷料通常设计用于减少摩擦、减轻内部组织剪切载荷、管理“微气候”,整体缓冲骶骨下软组织持续变形。 在本案例中,研究人员使用 Synopsys 公司的 Simpleware 软件基于 MRI 图像数据创建了臀部的三维有限元模型,用于研究仰卧或 45° 半坐卧在标准的医院泡沫床垫上时预防性骶骨敷料设计的生物力学性能。 亮点 通过模拟可以更好地了解医院的泡沫床垫对压力相关患者的损伤。Simpleware 软件快速准确的3D图像处理工作流程有助于缩短时间,增强对结果的信心,且可广泛应用于不同场景。持续性的研究可为选择和设计敷料以减少损伤的风险提供重要信息。 工作流 获取一名 28 岁女性受试者负重臀部的 76 张 T1 加权轴向 MRI 切片在Simpleware ScanIP 中进行图像数据分割和模型变形在Simpleware FE 中生成 3D 有限元模型,导出至 FEBio 的 PARDISO 求解器分析多层结构和持久的各向异性特性是对预防性敷料有利的重要特征 从 MRI 到三维图像处理 首先获取一名 28 岁健康女性受试者负重臀部的 76 张 T1 加权轴向 MRI 切片,使用 Simpleware ScanIP 分割出骨盆骨骼、股骨、骨骼肌和软组织。本研究应用相关的感兴趣区域(VOI)体积模型为 6.7×2×5.1 cm3 的立方体,包含骶骨和周围软组织。接下来,引入需要测试的3层预防性敷料,即聚氨酯泡沫层、无纺布纤维层和空气铺垫层,作为建模中的物理层。运用 Simpleware ScanIP 的三维编辑工具将模型化的敷料修整为典型的心形几何结构。 图:MRI切片和Simpleware […]

对 X3P2(X=Mg,Ca) 的电子、结构、力学和光学性质的从头算分析

Posted · Add Comment

摘要 本文介绍了用第一性原理计算模拟方法研究了$\mathrm{X}_3 \mathrm{P}_2$($\mathrm{X}=\mathrm{Mg,Ca}$)的结构、力学和光电性能的工作。结构和力学性能的结果表明,$\mathrm{X}_3 \mathrm{P}_2$ 化合物具有热力学和力学稳定性。此外,弹性常数和体积模量结果表明,$\mathrm{Mg}_3 \mathrm{P}_2$具有韧性,$\mathrm{Ca}_3 \mathrm{P}_2$为脆性。对能带的计算结果表明,两个化合物($\mathrm{Mg}_3 \mathrm{P}_2$ 和 $\mathrm{Ca}_3 \mathrm{P}_2$)的直接带隙($\Gamma – \Gamma$)分别为 0.523 eV 和 0.446 eV(GGA 泛函)。然而,在使用 HSE06 杂化泛函时,$\mathrm{Mg}_3 \mathrm{P}_2$ 的带隙提高到1.282 eV,$\mathrm{Ca}_3 \mathrm{P}_2$ 则提高到 1.092 eV。这两种化合物在可见光区域都表现出高光学吸收($\geq 10^5 \mathrm{cm}^{−1}$) 使其成为光伏应用的潜在候选材料。 结构和力学性质 两种材料的结构如下图: 结构经过优化后,对它们计算形成能(焓),即与稳定单质相比的能量:$$\Delta H (X_3 P_2) = E_{total} – 3E_{total}(X) – 2E_{total}(P)$$ 结果表明两个化合物都具有热力学稳定性。 为了进一步验证结构的稳定性,作者进行了分子动力学模拟,证实了在分子动力学水平上在室温下结构的动态稳定性。 作者还计算了体系的弹性系数矩阵,进行了Born-Huang晶格力学稳定性分析。由弹性系数矩阵可以得到体系的体模量、剪切模量、杨氏模量、泊松比、Pugh ratio等多种力学性质,并据此可以评估材料的延展性和脆性。 电子态和光学性质 使用PBE密度泛函和HSE06杂化泛函计算了体系的能带、态密度与投影: 使用HSE06对两种材料的光谱进行了计算: 参考 Bougherara, K., Al-Qaisi, S., Laref, […]

氢键构型对电子传输机制的作用【QuantumATK亮点文章】

Posted · Add Comment

研究内容 分子结中涉及氢键的电荷传输机制很复杂,目前尚不清楚。本研究的重点是阐明分子器件中的电子输运,该分子器件由两个掺硼金刚石界面与芳香连接分子结构和氢键替代分子结合而成。作者构造多个具有不同氢键构型的分子,连接在掺杂的金刚石电极(BDD)中间形成分子结,并逐一计算了各个结构的稳定构型、吸附能量、IV 曲线和 PLDOS 等。 图:构造的具有不同构型的模型分子结 结果 模拟得到的透射谱、电流和投影局部态密度(PLDOS)结合分析结果表明,这些结中的电子传输机制在很大程度上取决于连接和替代分子之间氢键的构型以及连接分子的化学性质。特别是,当氢键由 CTH 的对位羟基形成时,电子跳跃机制出现;间位羟基形成的键则不会诱导跳跃机制。如果没有氢键存在,则主要机制是隧穿。氢键几何形状的微小变化导致传输模式的能级和位置的对齐发生重大变化,并观察到电子传输机制从隧穿转变为跳跃,导致 I−V 曲线的形状和电流大小的变化。芳香连接分子中给电子羟基形成的氢键有助于电子输运,而吸电子羧基则抑制电子通过结的输运。作者将这种现象归因于环内部连接轨道电子密度的局部化,从而增加了隧穿长度。此外,由于连接和替代分子之间的不对称性,观察到一种整流效应。这些结果为分子结电子特性的调控提供了重要信息。 图:BDD−CTH−surrogate−BDD分子结的PLDOS和透射谱 图:BDD−ABA−surrogate−BDD 分子结的 PLDOS 和透射谱 图:BDD−CTH−surrogate−BDD、BDD−ABA−surrogate−BDD 分子结的IV曲线 参考 Olejnik, A.; Dec, B.; Goddard, W. A.; Bogdanowicz, R. Hopping or Tunneling? Tailoring the Electron Transport Mechanisms through Hydrogen Bonding Geometry in the Boron-Doped Diamond Molecular Junctions. J. Phys. Chem. Lett. 2022, 13 (34), 7972–7979. […]

利用有限元分析优化个性化的上颌植入物设计【Simpleware应用】

Posted · Add Comment

概述 Jajal Medical 公司使用 Simpleware 软件将患者的扫描数据(如CT、MRI)转换为适用于可视化和规划复杂手术的 3D STL 格式和有限元(FE)模型。数字化手术规划有助于降低手术期间意外并发症的风险、缩短手术室(OR)时间、节省资金以及改善临床结果和患者满意度,因此此类工作流程变得越来越有价值。 在这个案例中,患者被确诊为毛霉菌病,导致左上颌骨大面积缺损,Jajal Medical 需要为其优化个性化的上颌植入物设计。过程中运用到 Simpleware 和 Ansys 两款软件。 亮点 使用 Simpleware ScanIP 导入和可视化 CT 扫描,分割出骨骼使用 Ansys 软件进行骨骼/医疗器械间的交互模拟3D 打印患者特定骨骼模型和个性化植入物虚拟手术规划协助最终的手术和植入 3D可视化和分割 采用适当层厚的高分辨率 CT 扫描数据可视化上颌解剖结构及邻近区域。在 Simpleware ScanIP 软件中导入 CT 数据,执行分割并重建 3D 解剖模型,帮助外科医生更好地可视化和理解手术。 图:采用Simpleware软件分割颅骨CT数据 个性化植入物的设计 鉴于患者左侧上颌骨骼明显缺失,在 Geomagic Freeform 软件中以健康的右侧作为参考设计上颌植入物。然后将健康的右侧上颌骨镜像并与现有上颌重叠。这种方法有助于在缺损处重建上颌骨,确保对称性和美观。此外,在植入物的表面添加孔可以达到减重效果。考虑到牙齿康复,同时将标准基台的印模也合并到植入物中。 图:个性化上颌植入物的设计 有限元分析 最终位置确定后,将文件加载到 Ansys 软件中处理。Jajal 采用有限元方法解决涉及复杂几何形状的医疗结构问题,虚拟模拟实时加载条件、评估植入物应力和疲劳,继而帮助优化设计。对个性化的上颌植入物与上颌骨一起分析,研究植入物的设计安全性和性能表现。在 Ansys 中进行真实加载条件下的虚拟仿真,了解植入物设计上的应力情况。结果显示植入物上的 Von Mises 应力为 93.29 […]

 
  • 水滑石/硼酸锌/改性环氧树脂复合阻燃涂层的制备及其阻燃性能研究背景 发泡聚苯乙烯泡沫具有保温、吸水、抗压减震、耐候性好等优点,被广泛应用于产品包装、建筑消防、化工生产、汽车工业和航空航天等众多领域。根据相关统计,普通 EPS 阻燃性能较差,暴露在明火中容易发生分解燃烧,且燃烧时伴随着大量的浓烟和刺鼻气体,对人体和环境构成巨大威胁。因此,提高 EPS 的阻燃和抑烟性能至关重要。 研究内容 本研究由沈阳理工大学和辽宁工程技术大学等单位合作,基于机器学习势方法,使用 AMS 软件中的 ML Potential 模块完成燃烧模拟工作。构建铝镁水滑石、硼酸锌、聚氨酯和环氧树脂阻燃涂层晶胞模型。通过模拟手段从微观层面对涂层体系进行燃烧反应研究,该方法不仅能够直接获取涂层结构体系的燃烧演化过程,还能够利用微观阻燃机理揭示宏观阻燃现象。 图1 涂层分子模型 在 15000 fs 内,三种涂层体系内的总分子数量随温度升高而快速增加;15000-27500 fs 内,分子数量发生小幅度上下波动,说明燃烧逐渐减弱,分子的消耗和生成逐渐趋于平衡;25750-30000 fs 内,分子数量随温度降低而逐渐减少。0-2500 fs 阶段,涂层体系内势能的增加表明发生吸热反应;2500-27500 fs 阶段,体系内势能缓慢降低;27500-3000 fs 阶段,体系势能随温度降低而快速减小。 图2 燃烧过程中体系分子数量和能量的变化规律 [...]
  • Co-TMDC 磁性隧道结:自旋电子学的新前沿研究背景 过渡金属二硫化物(TMDCs)因其优异的电子和光学性能,成为各种应用中非常有前景的材料。这些材料的单层、少数层和块体多层结构可以通过各种方式进行合成,对材料的掺杂、缺陷工程和异质结构制备等技术还可以实现性能的定制。磁隧道结(MTJ)由两个被绝缘薄层隔开的铁磁电极组成。当铁磁电极的磁矩的平行(反平行)配置时,MTJ 表现出最小(最大)电阻,电阻的变化幅度可以以隧穿磁电阻(TMR)表示。在二进制术语中,这些电阻最小(最大)状态对应于 0/1。这些磁性比特的状态可以通过自旋转移力矩(STT)、自旋轨道力矩(SOT)或外部磁场来操纵。MTJ是自旋电子学的基本器件单元,主要用于读取和写入器件的磁性状态。其低功耗、大面积可扩展性、几乎无限的耐久性和非易失性使其适用于各种应用,如模数转换器、微波发生器、振荡器、磁传感器、非易失触发器、神经形态计算机、全加法器、基于自旋的 NANDS、自旋逻辑和磁随机存取存储器(MRAM)。 研究内容 作者研究了 Co/XY2/Co(X∈(Mo,W),Y∈(S,Se,Te))构成的高自旋极化电流的磁隧道结(MTJ)。密度泛函理论(DFT)用于计算基态电子性质,非平衡格林函数方法则用于量子输运计算。 图1. Co/XY2/Co 的结构示意图 [...]
  • 锂电池电极建模:基于 CT vs DFN 模型概述 随着电池制造业持续发展以应对交通电动化需求,企业获得加速电池设计与优化进程并降低成本等商业优势的同时也承受着日益增长的压力。新型材料和应用频繁且往往出人意料地涌现使快速优化锂离子电池(LIB)设计对制造商来说极具挑战性,必须摆脱对试错法的依赖,转向包括采用数学建模的更高程度自动化。 LIB 建模的基准模型 Doyle-Fuller-Newman(DFN)框架基于物理的连续介质模型且融合了多孔电极理论,而基于 CT 扫描图像重建的三维模型能够捕捉颗粒的真实几何形状。本研究基于 CT 和 DFN [...]
  • 【辽宁工程技术大学】褐煤在ReaxFF MD高温条件下的燃烧机理分析(Fuel 2025)研究背景 褐煤作为一种低阶煤,有挥发分和水分含量高的特点,导致其热值较低且易发生自燃,严重影响着能演工业的储存、运输和利用。当前研究从宏观层面揭示了褐煤的燃烧机制,但其背后具体的分子级燃烧特性尚未被充分理解,特别是在不同高温条件下的反应路径与动力学行为仍缺乏系统研究。目前,对于褐煤在高温下燃烧行为的系统性数据匮乏,制约了其化学动力学机制的深入挖掘。因此,深入了解褐煤的燃烧特性与自燃特性,并在此基础上优化其燃烧过程,对于提高能源利用效率、减少环境污染具有重要的现实意义。本文以神木褐煤为对象,基于表征实验构建并优化其大分子结构模型,采用Amsterdam Modeling Suite(AMS)软件与ReaxFF MD方法,对其在不同高温条件下的燃烧过程进行了系统模拟。重点分析了不同温度下神木褐煤的总势能变化、燃烧产物特征及其高温燃烧机制。模拟结果验证了自由基在煤燃烧反应链中的关键作用,尤其在高温条件下,通过自由基的持续生成与消耗维持复杂的燃烧过程。目前该文于2025年4月6日以“Construction of macromolecular model of Shenmu [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •