锂离子和其他类型的电池对许多应用都至关重要,制造商需要创新采用更轻、更持久、更安全的能源技术满足消费者的需求。电池的改进有助于推动从智能手机到电动汽车的未来技术,Simpleware 软件可以帮助研究人员通过三维图像建模、工业CT和其他类型的数据应对这些挑战。
基于3D图像和仿真优化电池性能
利用micro-CT和FIB-SEM等3D成像技术扫描电池,获得其独特的结构。根据这些数据,可以在微纳尺度分析离子分布、不同材料间的相互作用和孔隙率等特性,研究电池性能并识别缺陷,从而改进设计决策。
Simpleware提供的软件环境能够可视化、处理、分析电池图像数据,导出可用于模拟的有限元网格和3D打印文件。该软件可为用户提供许多关键优势:
- 创建复杂材料几何结构的详细模型,探索对性能的影响;
- 通过计算模拟测试的途径作为补充,潜在地减少对昂贵实验测试的依赖;
- 用户界面友好,可生成直接用于仿真的严密网格;
- 依据工作流程的自定义设置和脚本选项。
Simpleware软件在电池建模中的一些常见应用包括:
- 电池内部结构的可视化
- 图像的统计分析,如孔隙率
- 创建用于仿真的高质量FE / CFD网格
- 通过设计件与制造件的偏差分析识别缺陷
- 有效材料性质(刚度、渗透率等)的计算
案例:AAA电池
通过查看从标准现成的AAA电池中提取的信息,我们可以了解到Simpleware软件如何帮助处理电池的3D图像数据,本例为在Simpleware软件中处理由Micro Photonics提供AAA电池的micro-CT数据。使用不同技术获得的各种信息,如:
- 导入和可视化未经处理的2D和3D图像数据,通过将灰度信息映射为彩色和不透明度进行3D渲染,使用聚焦对比度突出感兴趣的特征。
- 自动和手动的分割方式识别特征,包括阈值、Flood Fill、区域生长和Otsu操作,使用形态学、平滑和局部校正滤波器提升分割质量。
- 采用Simpleware的局部校正滤波器处理大规模数据集,如电池这样的数据。先大幅缩减取样的扫描进行粗略分割,然后再转换为对全分辨率扫描应用滤波器。这样可以进行快速的初始处理,同时通过考虑灰度变化以减少射束硬化伪影的影响。
- 获取测量数据,包括点/距离/角度、体积统计和中心线分析,以及面向对象的边界框、壁厚分析、原始形状自动拟合等高级测量选项。
在Simpleware软件中处理电池数据时,更重要的功能之一是用于质量控制的数据集配准和表面对比。任何类型的数据都可以使用手动标注和自动的方法进行对齐和比较,比如图像对图像、CAD对图像、CAD对CAD。
该项技术能够可视化表面偏差、统计信息和原始数据,从而研究电池的CAD设计与传统制造或增材制造版本的不同,以及将如何影响性能。
视频:Simpleware软件中AAA电池的可视化与分割
用户成功案例
其他Simpleware软件应用于电池建模的一些案例,包括滑铁卢大学、阿克伦大学、卡耐基梅隆大学、印第安纳大学和普渡大学的研究,如锂离子电池异质微观结构的分析。这项应用研究了锂离子电池LiFePo4电极的微观结构,由nano-CT重建模型,导出到COMSOL Multiphysics模拟不同放电速率下的阴极性能。通过这项工作,研究人员可以更好地了解锂离子在电池电极真实微观结构中的空间分布如何影响性能。
视频:在Simpleware ScanIP中由nano-CT数据重建锂离子电池
关于使用Simpleware软件的其他项目,如帝国理工学院和伦敦大学学院开展固体氧化物燃料电池寿命与降解方面的工作,研究电池在纳米和微观尺度上与热、电化学和应力因素的关系。Simpleware软件为处理图像数据和导出用于仿真的网格模型提供解决方案,使研究人员能够探索不同尺度下燃料电池的寿命和降解,表征不同阶段主应力和界面。
参与该项目的Farid Tariq博士描述了Simpleware Software如何“成为工作流程的一部分,提供了可能难以通过实验测量获得一些结果的见解,这些可能就是性能退化的来源及微结构优化的目标区域”。
鉴于采用成像捕获电池具体细节这项技术的潜力以及运算能力的增长有助于实现更真实的模拟,这些工作流程对电池行业只会越来越重要。
参考
- 致谢和更多信息参考英文原文:https://www.synopsys.com/simpleware/news-and-events/battery-modeling-solutions.html