Simpleware 为数字岩石物理和岩石分型提供解决方案
使用 Simpleware 这款全面的 3D 图像处理软件,可轻松可视化、分割并量化扫描数据(CT、micro-CT、FIB-SEM……)。利用软件强大的网格化工具进行多孔介质分析和虚拟特殊岩心分析,导出多域模型至 FE 和 CFD 求解器。也可用于计算扫描样本的有效材料性质。
典型应用案例
利用数字岩石计算有效物理性质的形态学变换策略
岩石是一种天然多孔介质,其结构中不仅包含岩石骨架,还有大量不规则的孔隙和孔隙流体。储层岩石的电学、力学和物理性质评价对于油气勘探具有重要意义。
基于 micro-CT 图像的数字岩心技术为岩石物理研究提供了新的途径,与传统实验相比也具有很多优势。利用三维数字岩心模型和多物理场模拟可以对岩石样品的有效物理性质进行数值评价。然而,在利用扫描图像进行数字岩心建模的过程中,存在各种影响岩石性质数值计算精度的因素,如形态学变换等。
应用于同一岩心样品的形态学变换策略会导致不同的孔隙率计算结果。研究表明,图像处理算法也会影响孔隙结构的重建,进而对样品的电学性质计算产生较大影响。本项目采用不同的形态学变换策略,对体素为 6003 的三维数字岩心模型进行研究。通过结合使用 Simpleware 和 COMSOL Multiphysics 软件,计算测量岩心模型的孔隙率和孔隙结构,模拟岩心模型的有效电学性质。
脆性岩石试样断裂过程区及宏观疲劳裂纹行为研究
当材料在任意荷载作用下出现应力引起的新裂纹时,材料的应力状态会发生显著变化,应力的重分布将导致脆性岩石材料中原有裂纹发生扩展、钝化或改向,对材料的强度产生影响。由于循环加载和疲劳效应,在较小荷载作用下脆性材料就可能发生破坏,这种破坏属于材料的“疲劳”破坏。地铁隧道边墙、大坝、巷道顶板、桥梁和路基等在循环/重复荷载作用下均可能发生劣化。
损伤力学研究一般关注水平和竖直变形/应变,而这些变形是微/纳裂纹形成和扩展的结果。本研究结合试验与扫描电子显微镜(SEM)、计算机层析成像(CT)技术对断裂过程区(FPZ)进行观察和分析,探索断裂韧度(KIC)与循环载荷的关系。
利用多孔介质和数字岩石研究孔隙尺度流动模拟的参考和基准
数字岩石物理(DRP)是一种快速发展的多学科工具,可用于计算岩石性质(如孔隙率、渗透率、地层因子、I-Sw 曲线、毛细管压力曲线和相对渗透率),并采用高分辨率图像(如 x 射线计算机断层扫描、扫描电子显微镜)表征微观结构。
在某些情况下,DRP 可以起到补充作用,取代实验室中相对缓慢且昂贵的测量和根据经验趋势获得模型的需求。此外,将岩心柱上的 DRP 工作流程与同一柱体上的物理测量相结合,可以在更大长度范围内实现更可靠、更详尽的地层评估和表征。本研究对包含理想化和异质化的不同微观结构进行图像处理,利用多种不同数值模拟方式计算渗透率并对结果进行比较。
基于三维数字模型的碳酸盐岩绝对渗透率的数值模拟与评估
盐下碳酸盐岩储层复杂的孔隙结构通常表现出多尺度非均质性,给理解流体流动动力学和生产优化带来巨大挑战。与岩心实验分析相结合的数字岩石物理技术已被广泛应用于研究和计算孔隙结构的物理性质和流体流动特征。本项目采用由 micro-CT 高分辨率图像获得的岩石多孔介质 3D 模型进行单相数值模拟,计算和评估盐下碳酸盐岩的绝对渗透率。
模拟孔隙尺度的化学输运
基于图像的建模可用于分析通过多孔介质的传质现象,特别适用于储层岩石孔隙-喉道网络。这些分析的目的是为提高我们对流体通过可变孔隙尺度运动方式的理解和表征。
本项目使用真实结构的 micro-CT 图像数据,在 Simpleware 软件中进行可视化和处理,生成网格化的3D模型,然后将其导出至 COMSOL Multiphysics®中研究化学输运机制。
微孔结构中速度和压力分布的孔隙级 CFD 研究
多孔金属结构具有独特的高孔隙体积、高表面积和高杨氏模量的组合特性,广泛应用在与流体、热、压力波和机械冲击相互作用的材料中,适合作为各种工程和工业应用中的承重结构。典型的应用领域包含二氧化碳捕集和能量储存、过滤和减少废物、吸声、生物医学设备、能源(石油和天然气)和冶金加工。其他应用还包括如热交换器和吸声器的材料、水泥窑中的交换介质以及稠油和蒸汽辅助重力泄油(SAGD)技术中的下一代筛管材料。
本项目提出了一种基于微观尺度层析成像数据的孔隙结构表征和计算流体动力学(CFD)的建模方法,并模拟了流体在“真实”和“自适应”多孔金属结构中的流动分布。深入理解流体从达西到惯性的流动形态,并证实孔隙结构相关参数与多孔介质流体流动特性的关系。
表征微孔结构的有效导热系数:基于三维高分辨率图像的空隙级CFD仿真
金属基微孔结构因其独特的较高孔隙率、表面积、杨氏模量及固定的孔隙形态而广泛应用于传热和传质过程,可用作石油和天然气处理设备中的热管、骨修复和骨替代生物医学材料、太阳能集热器、燃料电池、冲击载荷、隔音材料和冶金加工。准确表征这些材料的效导热系数对于理解传热机制至关重要,从而辅助设计和优化系统性能。本研究通过对孔隙级流体和固体域的三维高分辨率图像处理和计算流体动力学建模与传导传热模拟,估算有效导热系数。
单轴压缩作用下量化2D和3D裂缝对井筒水泥渗透率的影响
作为天然气的主要成分,甲烷是导致全球变暖的主要因素之一。井筒水泥中的应力诱导裂缝会形成甲烷或二氧化碳泄漏的高风险通道,油气井的逃逸排放进而造成甲烷释放失控。因此,了解和减少泄漏途径对于最大限度地降低泄漏井对环境的影响至关重要。
本项目研究人员使用扫描电子显微镜(SEM)和显微计算机断层扫描(micro-CT)技术量化峰值压应力前后熟化高温触变水泥试样裂缝的 2D 和 3D 几何参数,提出一种量化应力诱导真实三维裂缝对水泥渗透率影响的模拟方法。
数字岩石:多孔介质中的多相流模型
数字岩石技术是基于孔隙尺度多相流的高端模拟,是分析评价枯竭井和生产井过程中的关键组成部分。数字岩石技术有助于优化原油产量,利用水、天然气、蒸汽、化学品或二氧化碳提高石油采收率。数字岩石密集的模拟关键成果包括相对渗透率、饱和度和润湿性。
开展这种高端模拟面临两方面的挑战:(1)清晰的多孔介质数字化;(2)在曲折的微尺度(10-40微米)岩石图案中求解多相流方程,考虑在非常低的毛细数流动条件(Ca~0.001-0.0001)下的润湿性。