通过3D打印支架的结构设计调控新生骨的体积和功能性

Posted · Add Comment

概述 由创伤、感染引起的临界尺寸骨缺损主要通过同种异体移植和自体移植进行治疗,但这种方案受限于供体部位发病率、感染和疾病传播风险以及有限的骨组织来源。因此,在临界尺寸缺陷中成功再生功能性骨组织仍然是一项重大的临床挑战。近年来,虽然合成的人工骨支架已得到广泛开发,但由于其在体内表现性能不佳,很少能转化为临床应用。本项目旨在系统地了解 3D 打印骨支架的结构设计,如何影响体内临界尺寸骨缺损治疗中新生骨的体积和功能性,以及如何优化以进一步改善结果。 亮点 设计 4 种不同的人工骨支架结构,探索孔径和渗透率对新生骨的影响;在 Simpleware 软件中处理 µCT 图像数据重建三维模型并生成高质量的体积网格;在 ABAQUS 软件中进行仿真,计算渗透率和有效刚度。 工作流程 设计 4 种连通性(100%)相同和孔隙率(≈49.3 ± 1.9%)相似(因工艺原因无法做到完全相同)的不同结构,采用 3D 打印技术为每种结构制作 6 个相同的支架。材料选用生物陶瓷材料 Sr-HT-Gahnite,包含掺锶的锌黄长石(Ca2ZnSi2O7)和锌尖晶石(ZnAl2O4)。这种材料在相当低的温度下仍具有出色的可烧结性,因此可以形成不存在微孔的微观结构。而且它的降解速率较低,可最大限度地减少支架对骨形成的化学影响。 将制备的支架切割成直径 10 mm、高 3 mm的圆盘状结构,使用 SkyScan 1172 扫描获得 µCT 图像数据,导入 Simpleware 软件进行图像处理,裁剪为特定形状用于结构分析。在 Simpleware FE 模块生成高质量的四面体网格模型,导出至 ABAQUS 计算渗透率、有效刚度和断裂强度。然后将支架压入兔颅骨中相同尺寸的骨缺损中,12 周时再次扫描并重建模型,确定每种结构的骨长入量,估算可表明机械稳定性的有效刚度判断新生骨的功能性。 不同排列结构的支架 四种结构的支架具有相同的连通性和近似的孔隙率,不同之处在于孔径和渗透率。结构 A 为对照组;结构 B:与 A 孔径不同,渗透率相近;结构 C:与 A 孔径相同,渗透率 A 是 […]

结合Simpleware 与 nTopology 实现患者个性化手术导板制作过程中的自动分割和设计工作流

Posted · Add Comment

概述 新的医疗器械技术使开发高质量、完全定制化的 3D 打印器械成为可能,有助于提高手术效率并改善患者预后。然而,随着对这些高度定制化器械需求的增长,为适应更高的处理量,在改进工作流的过程中受到了手动操作任务的限制,因为需要投入大量的劳动力和时间。急需克服的一些关键瓶颈包括分割患者图像数据和开展针对患者增材制造设计(Design for Additive Manufacturing,DfAM)的工作流程创建 3D 打印器械。 Simpleware 软件团队与 nTopology 合作,为定制手术导板开发了一个无缝、针对特定患者的设计工作流程,利用支持 AI 的图像处理和设计自动化应对共同的挑战。 图1 亮点 Simpleware – nTopology工 作流程可以高效地将 3D 解剖的 DICOM 数据转换为高质量模型。nTopology 工具利用扫描数据和参考标志点为患者提供功能性和形状匹配的个性化解决方案。通过自动化加速手术导板制作过程可以节省时间、提高产量。 Simpleware中的图像分割 针对本项目中的膝关节 CT 数据,Simpleware 软件中有几种不同的分割选项。手动图像分割涉及对图像数据进行各种操作,包括裁剪、阈值分割和应用掩膜洪水填充去除不需要的部分后获得所需的解剖结构,在这里指的是胫骨。Split regions 工具还可以采用算法标记不同的区域以分割出不同的掩膜,分离出胫骨。此外,Close 和 Cavity fill 等工具可以进一步填充掩膜内部,平滑和创建高质量的三角形表面后导出至 nTopology。 图2:在Simpleware软件中使用Split regions工具进行膝关节分割 然而,这些手动步骤也可以使用一系列基础和更高级的脚本选项实现自动化。比如,在手动分割过程中录制宏,显示和运行所有的功能/操作。脚本可以用 Python 和 C# 编译,包括删除脚本中不需要或不可用的任何工作流步骤。通过重放脚本即可生成相同的输出。更进一步地,还能使用脚本创建一个插件添加到 Simpleware 中,可以设置允许宏在不同阶段运行,取决于仍然需要手动完成的操作(例如 split regions)。 基于AI的机器学习自动化 为了扩展自动化,基于 AI 的机器学习模块 Simpleware AS Ortho / CMF 可以在大约两分钟内完成分割,然后通过脚本执行任何其他的步骤。在该模块还可以选择为分割后的胫骨自动添加标志点作为测量点,用于设计手术导板。 在这个项目中,需要处理大约 50 个患者的胫骨模型。Simpleware AI 解决方案意味着可以快速地完成一个大型的工作流程,不必进行重复的手动分割操作。如果需要将所有的胫骨放在大致相同的位置,标志点则可以作为配准工具的参考点将所有的胫骨表面组合在一起。 图3:使用Simpleware AS Ortho / CMF进行胫骨自动分割 nTopology的设计过程 然后将 Simpleware 软件导出的数据作为 nTopology 软件的输入,用于创建可重复的设计过程。nTopology 可以使工作人员根据患者模型自动生成导板匹配面的共形几何,并根据 Simpleware 软件提供的标志点参数化切割孔和缝的位置。 另外,设计工作流程中包含可制造性的考虑以及结构支撑柱、平齐基底结构的添加。设计流程的输出是为增材制造准备的网格文件。 为胫骨手术导板设计这种完整端到端的工作流程意味着临床医生或技术人员可以轻松地按需更改,例如调整导板的设计、用包含一组特定标志点的患者扫描数据定制切割角度。在设计过程的编码中已经综合考虑了专业的可制造性,因此即使没有工程或设计经验的用户也可以无门槛地使用该工作流。 图4:nTopology软件中的最终手术导板 使用脚本自动生成设计 采用这种方法,有一个清晰的路径可以改进和自动化设计患者个性化器械的生成。一旦为单个切割导板创建并验证了设计过程,就可以使用简单的脚本和 n TopCL – n Topology 的命令行界面自动批量处理患者扫描数据的整个文件夹。 在这个概念验证中,研究团队创建了一个 Python 脚本处理 50 个胫骨,并自动为每一个数据生成独特的患者个性化导板。仅用数分钟编写的几行代码即可节省人工设计工作的时间。对于更复杂的项目,可以使用相同的方法把复杂的逻辑构建到工作流中,这样可以将多个来源的数据结合起来- […]

个性化模拟去骨瓣减压术

Posted · Add Comment

需要进行侵入性脑手术的常见原因是来自肿胀变形产生的的致命压力。在这种情况下,神经外科医生会尝试通过去骨瓣减压术缓解压力,切开颅骨让大脑“膨出”。这种方法通常是基于个人经验,具有导致患者严重残疾的风险。在去骨瓣减压术中,大脑神经纤维即轴突有被切断的风险,因此该手术成为外科医生“最后的手段”。 斯蒂文斯理工学院、斯坦福大学、牛津大学、埃克塞特大学等在该领域都已取得了突破性的进展。研究人员开发的工作流程中,使用 Simpleware 软件处理医学图像和生成大脑的有限元(FE)模型,用以模拟不同条件下的开颅手术。这些方法的运用能够使神经外科医生深入地了解极端状况下的组织运动学,有助于规划开颅手术的形状和位置。 创建大脑模型 图1:由3Tesla扫描设备获得成年女性脑部 MRI 图像 大脑包含数十亿神经元和数万亿的突触,所以建模会非常困难。使用 Simpleware 软件通过分割大脑和颅骨的关键区域可以降低这种复杂性。从 3T 扫描仪(GE)获取成年女性头部 MRI数据,导入 Simpleware ScanIP 中进行图像处理,识别分割出感兴趣区域,如组织、小脑、皮肤和颅骨等。 图2:在 Simpleware 软件中创建的头部 FE 网格模型 接下来的挑战是从复杂的分割图像数据中生成可用于仿真的有限元模型。在 Simpleware FE 中利用专有算法同时对不同区域进行精细地网格划分,生成的网格模型可直接用于仿真求解器,无需其他任何后处理。 模拟去骨瓣减压术 将有限元网格模型导入 ABAQUS ,研究具有两种不同颅骨开口的颅骨切除模型:单侧瓣和额部骨瓣。定义材料模型、边界条件、相互作用、约束后,分析不同的溶胀场景。模拟的目的是预测去骨瓣减压手术对大脑的机械负荷,包括白质组织和特定半球的最大体积肿胀。 图3:去骨瓣减压术计算模拟的矢状面和横断面及对应的左侧大脑半球肿胀 结果&结论 该方法研究了位移场、最大主应变以及径向和切向轴突拉伸的影响。模拟可以确定最佳的开口大小,从而控制压力和最大限度地减少轴突损伤的风险。颅骨开口边缘处高强度拉伸的结果表明,预计较大的颅骨切口会减少和分散在大脑中的轴突负荷。研究还发现,打开肿胀同侧的颅骨会产生更好的患者预后。 图4:三种不同脑肿胀场景的中线移位 个性化的头部和大脑模型是改善去骨瓣减压手术效果的有效工具。神经外科医生受益于能够获得辅助术前规划的新数据,同时不同场景的模拟可以实现针对特定患者的手术方案。更长期的临床影响包括减少手术并发症和需要进行的实验测试。在未来,该工作流程可以扩展到任何涉及脑损伤、撞击以及电磁(EM)治疗的场景中。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/news-and-events/simulating-brain-surgery.htmlWeickenmeier, J., Saez, P., Butler, C.A.M., Young, P.G., Goriely, A., Kuhl, E., 2017. Bulging Brains. Journal of Elasticity, 129(1-2), […]

肿瘤手术的术前规划、虚拟仿真和手术导板

Posted · Add Comment

概述 3D LifePrints 公司使用 Simpleware 软件从患者图像获得 3D 打印的解剖模型,用于3D虚拟仿真和手术导板设计。Simpleware 用于诊断的 3D 打印正在帮助3D LifePrints 实现即时医疗(POC)3D 打印以及嵌入式临床。 3D LifePrints 重点关注的专科之一是肿瘤外科,目前已在英国的一些专科医院开展合作。他们的工程师帮助手术团队处理困难和复杂的病例,参与到切割导板的设计和制造。这里展示两个最近的成功案例,包括半骨盆切除术和定向髂骨切除术。 亮点 使用 Simpleware ScanIP 导入和可视化 CT 扫描,分割骨骼使用 Ansys 软件进行骨骼/器械间相互作用的模拟3D 打印包含定制植入物的患者骨骼模型虚拟手术规划辅助最终的手术和植入该工作流程节省时间并可更好的支持临床决策 PI/II 半骨盆切除术 在本例中,3D LifePrints 需要创建灭菌性手术导板,协助切除患者左半骨盆被肿瘤肿块破坏的部分。由于肿瘤切除手术日期紧迫,需要快速完成服务。工程师使用 Simpleware ScanIP Medical 对患者最新的 MRI 和 CT 扫描数据进行分割,创建包含肉瘤的左半骨盆虚拟模型。然后通过安全的手术切缘使肉瘤数字化扩增,突出显示以更好地区分,帮助外科医生评估和确定最佳手术切割平面。 3D LifePrints制作了3种不同的手术导板:(1)通过髂骨侧方的双平面切口(2)通过耻骨的单切口(3)引导通过坐骨的单切口。3种导板均采用可灭菌的USP Class VI生物相容性透明材料Biomed Clear,在该医院内3D Life Prints控制环境设备Formlabs 3B 3D打印机上打印制成。 图:由Simpleware生成的PI/II 半骨盆切除术模型 3D Life Prints能够在5天内创建解剖模型和设计制造导板,满足手术紧迫性的需求。手术团队使用解剖模型和导板作为术前工具,与患者详细讨论肿瘤的复发和转移。在术中,最佳匹配的导板帮助实现单一的后路扩大技术,显著缩短手术时间。 定向髂骨切除术 第二个案例的患者在常规扫描中被发现显示为无症状1级软骨肉瘤,然后进行了单独的进一步检查。肿瘤较小且位于患者的左侧髂骨,因此外科医生希望进行有针对性的、保留骨骼的切除术,确保合适的切缘以保留髂骨的完整性。 因此,3D LifePrints为该手术设计并提供了患者特定的灭菌手术钻孔导板。使用Simpleware ScanIP Medical从患者的CT和MRI扫描中分割出骨骼和肿瘤结构。然后将这些解剖结构组合为虚拟的模型,其中通过肿瘤的数字化生长创建安全的手术切缘。突出显示边界以获得更好的可视化,方便外科医生确定最佳的切除路径。 3D LifePrints使用Biomed Clear材料制作患者专用的圆形钻孔通道导板,并将3D打印的解剖模型交付给手术团队供术中参考。 图:为定向髂骨切除术准备的3D打印模型和手术导板 导板拟合良好,外科医生通过必要的钻孔引导后续的截骨手术,使手术变得简单并在一小时内完成。总的来说,手术团队高度赞扬了导板的精度水平。这种精确性意味着在保留骶髂关节和避开神经血管结构的同时,可以安全地切除肿瘤。术后患者经历了快速的康复期。 总结 3D LifePrints目前的应用和正在开发的专科手术领域,以及它们通过嵌入式中心密切参与临床站点,展示了将患者数字化、设备产品和服务带向即时医疗的巨大潜力。Simpleware软件可以支持3D LifePrints实现快速高效的工作流程,通过医学影像到3D打印等虚拟方法帮助改善患者治疗。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/oncological-surgical-planning.html

患者颅缝早闭矫正的计算模拟

Posted · Add Comment

概述 人字缝早闭型颅缝早闭(LC)是一种罕见的非综合征型颅缝早闭,特征是出生时头后部人字缝融合。虽然有像弹簧辅助颅成形术这样的手术选择,但美学效果通常并不理想。为了解决这个问题,研究人员开发的 LC 颅骨参数化有限元(FE)模型可以用来优化将来的弹簧手术。 选择三名接受弹簧辅助颅成形术的患者作为研究对象,在 Simpleware 软件中由他们术前 CT 数据创建颅骨结构模型。然后模拟比较术前 CT 图像和手术的颅骨生长,通过在虚拟场景中重现这一过程,可能有助于改善未来的 LC 手术。 亮点 为了更好地理解颅缝早闭的干预措施,在 Simpleware 软件中使用CT图像创建FE模型在 Simpleware CAD 模块中比较颅骨生长的表面偏差模拟用于比较术前 CT 成像、手术干预和术后干预目标是改善未来的外科实践 数据获取与重建 3 例因颅骨形态异常的 LC 患者在英国伦敦大奥蒙德街医院颅颌面外科接受了弹簧辅助颅成形术,并在术前和术后进行头部 CT 扫描。将 CT 图像导入 Simpleware ScanIP 软件中重建这两个不同阶段的颅骨,经过分割和处理以确定颅骨至上颌骨及骨缝结构的骨骼。 图:使用 Simpleware 软件从 CT 图像重建患者术前和术后的颅骨模型 为模拟划分网格 在 Simpleware FE 中采用结构化的 3D 四面体单元生成颅骨的有限元(FE)模型,对不同的解剖区域赋予合适的材料属性建模。在对颅骨模型进行截骨之前,通过使用热膨胀系数在 MSC Marc 中近似模拟术前成像和手术之间的颅骨生长。将颅内体积(ICV)作为表示不同阶段颅骨大小的参数,包括在 Simpleware ScanIP 中通过选择颅顶内表面进行术前CT重建。 通过在 Simpleware ScanIP […]

基于患者医学图像建模预测膝关节置换术结果

Posted · Add Comment

膝关节运动的计算模拟可以通过患者模型基于全膝关节置换术(TKA)后关节动力学研究 TKA 的结果。澳大利亚的 360 MedCare 公司使用 Simpleware 软件创建模型,并于近日开发了一种采用 3D 图像处理/分析结合预测算法综合考虑患者报告结局与深屈膝计算模拟输出,从而评估手术结果的方法。360 MedCare 的工程师与多家医院、骨科研究机构和企业合作获得了关于TKA手术规划的新见解,并在《The Knee》杂志发表了他们的研究成果。 图:从 3D 图像分割到患者个性化模拟的生成(第一组) 开发术前工具 尽管 TKA 是一种普遍成功率较高的手术,但部分患者术后会出现问题,其中植入位置不佳是主要原因之一。提升针对特定患者膝关节动力学以及它们如何与植入物相互作用的理解对于通过创建数据改进手术规划至关重要。对给定植入物选型与组件对齐结果进行运动学模拟,这样的虚拟术前试验可以查看和比较不同对齐方案的模拟结果。将其与患者报告结局(PROs)联系在一起时,预测算法可能有助于选择未来患者的手术规划。 完整工作流程的简要总结如下: 采用计算机断层扫描(CT)收集不同TKA患者的图像数据,第一组含有术前和术后扫描及结局调查,第二组为随机选择含有术前扫描的膝关节样本(术后扫描不是必要的);在 Simpleware 软件中采用半自动化流程重建患者股骨和胫骨的三维模型,标注解剖标志展示该患者软组织附着物和骨轴;第一组:TKA 后在 Simpleware 软件中将术前骨骼和3D植入物结构文件与分割的术后CT扫描进行配准;利用创建的三维模型运行深屈膝的多体动力学仿真,然后将结果用于机器学习算法的运行,预测术后12个月膝关节损伤与骨关节炎评分(KOSS)中患者可接受症状状态(PASS)评分;第二组:结合术前患者数据和预测模型评估其临床规划的性能;生成的预测算法(动态膝关节评分)包含不同的特征,预测 PASS KOOS 评分达到的曲线下面积(AOC)为0.64。 图:周期伸展(活动)的部分期间患者早期屈曲的模拟 未来影响 研究发现,该方法有可能成为 TKA 手术决策过程中的强大辅助工具,但需要在除现有技术之外以及项目未涵盖非手术因素的背景下使用。该方法的应用可能还包括协助在其他可选的合理手术对齐计划间确定最佳结果。考虑到在髋关节和其他部位的手术规划中越来越多地使用到基于图像的工作流程,以及开发基于机器学习的方法加速常见任务,360 MedCare 的工作展示出未来应用的广阔前景,继续期待他们更好的发展。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/news-and-events/tka-360medcare.htmlTwiggs J, Miles B, Roe J, et al. Can TKA outcomes be predicted with computational simulation? Generation […]

预防性骶骨敷料的多层结构设计模拟【Simpleware应用】

Posted · Add Comment

概述 骶骨是仰卧时发生压力性损伤(PIs)包括深部组织损伤的最敏感部位。预防性敷料通常设计用于减少摩擦、减轻内部组织剪切载荷、管理“微气候”,整体缓冲骶骨下软组织持续变形。 在本案例中,研究人员使用 Synopsys 公司的 Simpleware 软件基于 MRI 图像数据创建了臀部的三维有限元模型,用于研究仰卧或 45° 半坐卧在标准的医院泡沫床垫上时预防性骶骨敷料设计的生物力学性能。 亮点 通过模拟可以更好地了解医院的泡沫床垫对压力相关患者的损伤。Simpleware 软件快速准确的3D图像处理工作流程有助于缩短时间,增强对结果的信心,且可广泛应用于不同场景。持续性的研究可为选择和设计敷料以减少损伤的风险提供重要信息。 工作流 获取一名 28 岁女性受试者负重臀部的 76 张 T1 加权轴向 MRI 切片在Simpleware ScanIP 中进行图像数据分割和模型变形在Simpleware FE 中生成 3D 有限元模型,导出至 FEBio 的 PARDISO 求解器分析多层结构和持久的各向异性特性是对预防性敷料有利的重要特征 从 MRI 到三维图像处理 首先获取一名 28 岁健康女性受试者负重臀部的 76 张 T1 加权轴向 MRI 切片,使用 Simpleware ScanIP 分割出骨盆骨骼、股骨、骨骼肌和软组织。本研究应用相关的感兴趣区域(VOI)体积模型为 6.7×2×5.1 cm3 的立方体,包含骶骨和周围软组织。接下来,引入需要测试的3层预防性敷料,即聚氨酯泡沫层、无纺布纤维层和空气铺垫层,作为建模中的物理层。运用 Simpleware ScanIP 的三维编辑工具将模型化的敷料修整为典型的心形几何结构。 图:MRI切片和Simpleware […]

利用有限元分析优化个性化的上颌植入物设计【Simpleware应用】

Posted · Add Comment

概述 Jajal Medical 公司使用 Simpleware 软件将患者的扫描数据(如CT、MRI)转换为适用于可视化和规划复杂手术的 3D STL 格式和有限元(FE)模型。数字化手术规划有助于降低手术期间意外并发症的风险、缩短手术室(OR)时间、节省资金以及改善临床结果和患者满意度,因此此类工作流程变得越来越有价值。 在这个案例中,患者被确诊为毛霉菌病,导致左上颌骨大面积缺损,Jajal Medical 需要为其优化个性化的上颌植入物设计。过程中运用到 Simpleware 和 Ansys 两款软件。 亮点 使用 Simpleware ScanIP 导入和可视化 CT 扫描,分割出骨骼使用 Ansys 软件进行骨骼/医疗器械间的交互模拟3D 打印患者特定骨骼模型和个性化植入物虚拟手术规划协助最终的手术和植入 3D可视化和分割 采用适当层厚的高分辨率 CT 扫描数据可视化上颌解剖结构及邻近区域。在 Simpleware ScanIP 软件中导入 CT 数据,执行分割并重建 3D 解剖模型,帮助外科医生更好地可视化和理解手术。 图:采用Simpleware软件分割颅骨CT数据 个性化植入物的设计 鉴于患者左侧上颌骨骼明显缺失,在 Geomagic Freeform 软件中以健康的右侧作为参考设计上颌植入物。然后将健康的右侧上颌骨镜像并与现有上颌重叠。这种方法有助于在缺损处重建上颌骨,确保对称性和美观。此外,在植入物的表面添加孔可以达到减重效果。考虑到牙齿康复,同时将标准基台的印模也合并到植入物中。 图:个性化上颌植入物的设计 有限元分析 最终位置确定后,将文件加载到 Ansys 软件中处理。Jajal 采用有限元方法解决涉及复杂几何形状的医疗结构问题,虚拟模拟实时加载条件、评估植入物应力和疲劳,继而帮助优化设计。对个性化的上颌植入物与上颌骨一起分析,研究植入物的设计安全性和性能表现。在 Ansys 中进行真实加载条件下的虚拟仿真,了解植入物设计上的应力情况。结果显示植入物上的 Von Mises 应力为 93.29 […]

利用丰田的THUMS虚拟人体模型开发评估漏斗胸的有限元模型【Simpleware应用】

Posted · Add Comment

概述 基于成像数据的人体虚拟测试对于缓解生理实验的伦理和实际问题具有非常重要的意义。在本案例中,日本 JSOL公司和长野儿童医院将丰田公司虚拟人体模型(THUMS)的安全测试应用拓展到解决漏斗胸建模的医学挑战,漏斗胸是胸廓畸形的一种。 本项目使用 Simpleware 软件使用适合用于变换到 THUMS 的精细 FE 模型的 CT 数据,创建真实患者的胸部结构,为模拟术后肋软骨的生长提供了基础。 亮点 丰田公司的高精细 THUMS FE 人体建模软件适用于医学图像数据和病理学研究使用 Simpleware 软件由 CT 数据生成模型基于图像模型和 THUMS 的图形变化提供了详尽的仿真资源THUMS 创建的模型向未来的临床模拟提供更多选择 THUMS 的开发 THUMS 于 2000 年首次发布,是丰田汽车公司和丰田中央研发实验室合作研究项目的成果,也是世界上第一个用于重现和分析车辆碰撞过程中全身损伤的虚拟人体模型。由此产生的 THUMS 虚拟人体软件程序可适应不同的身体形态和环境,包含骨骼、大脑、内脏和肌肉。 图:THUMS中乘客模型的开发。 此外,THUMS 能够准确再现人体的形态和力量,同时也为重复不同碰撞模式的分析提供机会。因此在汽车行业,THUMS 能够在进行碰撞试验时显著减少开发时间和降低伦理风险。丰田公司从 2021 年 1 月开始无偿公开 THUMS 软件,旨在扩大其在汽车安全研究中的应用。SOL 公司和长野儿童医院为我们演示了如何将该模型应用到医学研究。 在漏斗胸研究中的应用 漏斗胸是胸前部的结构畸形,胸骨和胸腔形状异常,患者在出生或青春期胸部会出现塌陷或凹陷。手术干预中最常用的是 Nuss 微创手术,在凹陷的胸骨下植入弯曲的金属板,将胸骨支撑到正常位置,留置体内几年后取出。 在本研究中,JSOL 和长野儿童医院通过对一个 10 岁儿童的 THUMS 模型进行胸部变形处理,创建了重现患者骨骼形态和病理状态下的漏斗胸模型。然后他们利用热膨胀现象模仿术后肋软骨生长这种生理变化,从而模拟术后进展。 究人员参照患者的实际骨骼形态观察胸廓变形 漏斗胸模型的创建工作流程 […]

全髋关节置换植入物定位【Simpleware应用】

Posted · Add Comment

概述 植入物定位是全髋关节置换术的一个重大挑战。植入物必须要很好的适合并放置在髓管内,尽量使股骨—植入物的接触面积最大化。然而植入物位置的实验测试会超出成本的限制。另一种选择是使用计算模型在产品研发初期就综合分析植入物的位置。尽管这种方法并不是为了取代实验,但它可以帮助外科医生更好地理解植入位置对原发或继发稳定性的影响。结合 Simpleware 软件与 ANSYS 创建自动化的工作流程,整合 CAD 设计的植入物和股骨 CT 扫描,生成用于微动分析的有限元模型。模拟结果生成的响应面证实了位置变化对微动的影响。 亮点 在Simpleware软件中整合CAD植入物和股骨CT扫描在Simpleware软件中生成FE网格通过脚本自动生成多组植入物位置/方向在ANSYS Workbench中进行植入物微动的模拟对结果进行后处理并生成响应面预测植入物位置的最佳和最差情况 图像处理和CAD整合 使用Simpleware ScanIP和Simpleware CAD将由CT扫描进一步处理获得的分割后的股骨模型与CAD设计的植入物结合。然后利用Simpleware FE生成有限元网格,导出至ANSYS Workbench中进行微动模拟。通过Simpleware API运用Python脚本自动生成多个植入位置,而无需耗费大量时间手动调整。 图:使用Simpleware CAD将分割后的股骨与CAD设计的植入物结合 FE网格生成 在本例中,为每个植入位置生成有的限元网格包含股骨的约10000个节点和38000个单元,钛金属植入物模型约2000个节点和6000个单元。采用Simpleware软件的自动转换算法基于原始扫描的CT值(Hounsfield单位,HU)为股骨分配标准材料属性。为模拟约束和加载条件给植入物和股骨添加节点集,在植入物—骨界面处的网格细化也增加了模拟的真实性。 图:使用Simpleware FE对股骨和植入物进行网格划分 应力分析&响应面模型 将初始的有限元模型导出至ANSYS Workbench,在上千个可能的候选的基础上产生成功的微动模拟。利用Kriging回归法对425个成功模拟点进行插值,生成响应面模型(RSM)。 ANSYS Workbench模拟可以利用RSM确定导致微动最高和最低可能值对应的植入位置。外科医生可以根据这些结果解释和预测植入物的最佳和最差位置。 图:在ANSYS Workbench中获得的最佳位置(左)和最差位置(右) 结果:最佳/最差的植入位置 利用Simpleware软件和ANSYS结合图像数据与有限元分析,成功地开发了一种用于分析植入物与股骨间相互作用的自动化工具。采用的响应面方法使人们深入了解微动对定位的敏感性。 随着该工具可行性的建立,进一步的工作可以集中在研究多个植入物设计在患者群体的分析。因此除了植入物研发之外,该工具在手术规划方面也有非常重要的应用。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/total-hip-replacement.html。