电场治疗脑肿瘤的建模【Simpleware应用】

Posted · Add Comment

概述 交变电场或肿瘤电场治疗(TTFields)是一种治疗癌症,特别是复发性胶质母细胞瘤的电磁场疗法。与传统方法相比,肿瘤电场治疗通过头皮上的阵列传递低强度的电流,展现出良好的效果。然而,人们对肿瘤电场治疗在脑内的精确分布以及它们覆盖复发性胶质母细胞瘤程度仍不甚了解。医学图像数据的计算仿真为分析肿瘤电场治疗胶质母细胞瘤的效果提供了解决方案,Simpleware 软件可以为此类应用研究生成精准的模型。 亮点 获取复发性胶质母细胞瘤患者治疗期间的MRI数据使用 Simpleware 软件生成带有传感器阵列的三维头部模型并划分网格将网格模型导出至 COMSOL Multiphysics 分析电场分布仿真结果有助于拓展对肿瘤电场治疗的认识 MRI 图像采集与肿瘤治疗 研究人员的目的是测定患者脑内的电场分布随频率的变化,因此他们对大脑结构使用了协同配准(co-registered)钆剂后 T1 加权、T2 和 MP RAGE 图像与预设的电导率和相对介电常数。1 例 67 岁女性患者的神经影像学回顾性分析,其患有右侧后脑复发性胶质母细胞瘤,在初始经过神经外科手术切除后进行了 6 个月的肿瘤电场治疗,每日颅外照射加替莫唑胺,照射后以替莫唑胺为佐剂。然后她同时接受注射一剂 10 mg/kg 的贝伐珠单抗(每两周一次)和肿瘤电场治疗,在可能的情况下持续地作用在她剃光的头上。传感器阵列的放置是基于计算机通过对MRI数据中她头部、肿瘤大小和肿瘤位置的形态测量,从而生成的个性化布局。这两种治疗持续到 24 个月时在右侧脑室外侧缘发现另一个患病部位。 图:患者脑部 MRI 图像:初始治疗 6 个月后,肿瘤可见于上层切片(A)和下层切片(B);24 个月后在右侧脑室外侧缘(D)处发现新的患病部位,而原发肿瘤稳定(C)。 图像处理和网格划分 同一个基线 MRI 用于布局,使用 Simpleware ScanIP 由协同配准的 MRI 图像数据生成头部 3D 模型。在Simpleware FE 中为每一个分割出的头部结构和传感器阵列生成有限元网格,头部包括头皮、颅骨、硬脑膜、脑脊液(CSF)、幕上灰/白质、脑室、脑干、小脑、复发性胶质母细胞瘤。然后将复合的有限元网格模型导出为 COMSOL Multiphysics 的格式。 图:利用 Simpleware 软件创建带有传感器阵列的头部模型 模拟结果 […]

人工智能技术加速3D打印心脏模型【Simpleware应用】

Posted · Add Comment

概述 Nicklaus儿童医院心血管外科高级项目实验室(APL)需要为一名青少年患者制定一项复杂的手术规划,该患者左冠状动脉异常起源于右主动脉窦,伴壁内、动脉间行程。 病理的复杂性决定了对患者心脏进行3D CT扫描(DICOM格式)十分必要,而3D打印模型将有助于医生团队为手术规划展示心脏通路。因此,他们利用Simpleware软件对DICOM图像数据进行自动化分割,在短短15分钟内就成功创建出能够直接用于3D打印的模型。本案例中打印模型所用设备为Stratasys J750 Digital Anatomy打印机。 亮点 Nicklaus儿童医院心血管外科APL团队在他们的常规工作流程中使用Synopsys公司的Simpleware软件进行3D解剖模型打印;Simpleware的AI工具有助于快速创建出超高精度模型;打印出高质量3D解剖模型的设备为Stratasys J750 Digital Anatomy打印机。 介绍 3D解剖打印可以为临床医生带来众多益处,包括增强病理的可视化和测量以支持标准手术与复杂手术的规划,同时也能够整合医疗器械(如有适用)。Nicklaus儿童医院心血管外科高级项目实验室(APL)正在利用包含全息医学3D可视化和3D打印在内的各种先进技术促进加强手术规划、改善患者体验。作为美国最早应用3D打印技术进行手术规划和教育的机构之一,Nicklaus儿童心血管外科APL已经打印超过500例心、脑、脊柱、四肢等器官的模型。 Nicklaus儿童医院的Robert Hannan、MD、Thomas Haglund和Muhanad Shraiteh与Synopsys的Simpleware产品团队通力合作,开发出将患者影像数据转换为Stratasys 3D打印机适用模型的解决方案。打印得到的3D解剖模型有助于临床医生规划儿童心脏手术。在本案例研究展示的示例中,心血管外科APL团队使用Simpleware软件强大的人工智能(AI)工具加快为青少年患者创建心脏模型的工作流程。 Simpleware 软件中的自动化分割和打印准备 将患者的心脏CT扫描数据导入Simpleware ScanIP Medical和自动分割模块Simpleware AS Cardio,一键点击即可完成分割和标记。此过程显著改善了准备3D图像数据最常见的瓶颈之一。(视频:使用Simpleware AS Cardio进行心脏的自动分割:展示了典型现有分割工具与Simpleware AI产品之间的耗时差异。)

分析增材制造冠状动脉支架【Simpleware应用】

Posted · Add Comment

概述 激光粉末床熔合技术(L-PBF)在金属增材制造(AM)方面的发展能够实现在微米范围内制造出高度多孔的细胞结构,因此理论上可以用于制造冠状动脉支架。 然而,工艺产生的不平整带来了特别的挑战,导致实际的 L-PBF 支架与预期支架(CAD 模型)在形态和力学性能上都存在偏差。本次分析着重关注 L-PBF 支架的膨胀行为。为进一步研究这些不平整造成的影响,基于真实和计算机重建L-PBF 支架建立实验和计算的联合框架。 亮点 使用Simpleware ScanIP 基于 µCT 数据重建 L-PBF 支架模型使用 Simpleware FE 生成稳健高效的支架网格模型,使用 Abaqus FEA 软件进行后续的结构分析基于重构的支架模型,采用实验测试和数值分析相结合的方法反演确定 L-PBF 支架的力学性能分析工艺产生的不平整对力学行为的影响,特别是 L-PBF 支架的膨胀行为。 实验数据 由 FIT Production GmbH 公司制造的激光粉末床融合(L-PBF)支架,考虑了两种分析 L-PBF 支架的后处理状态:1)热处理;2)电抛光和热处理。在支架被放置在两块板之间压缩以确定它们的径向强度之前,首先获取支架结构的 µCT 图像。在原始的实验中还对制造的支架做了进一步研究(详见参考信息)。 支架模型重建及FEA 将 µCT 数据导入 Simpleware ScanIP,使用 Flood Fill 工具进行分割,计算内部孔隙率。使用形态滤波器(erode、dilate、open和close)和 Boolean 布尔运算,生成内部空隙的三维模型。在 Simpleware FE 模块中对支架模型进行网格划分,由稳健的算法生成高质量的 FE 网格。然后将支架模型直接导入 SIMULIA Abaqus FEA 软件进行结构力学分析,重点研究支架在两个平板间的压缩和支架—球囊的扩张。 图:三个模型离散化图示。从左至右分别为:重建经热处理支架模型、重建经热处理和电抛光支架模型、以CAD模型为参考支架模型。 图:三个模型在压缩 0.8 mm 时外表面 […]

全髋关节置换植入物定位【Simpleware应用】

Posted · Add Comment

概述 植入物定位是全髋关节置换术的一个重大挑战。植入物必须要很好的适合并放置在髓管内,尽量使股骨—植入物的接触面积最大化。然而植入物位置的实验测试会超出成本的限制。另一种选择是使用计算模型在产品研发初期就综合分析植入物的位置。尽管这种方法并不是为了取代实验,但它可以帮助外科医生更好地理解植入位置对原发或继发稳定性的影响。结合 Simpleware 软件与 ANSYS 创建自动化的工作流程,整合 CAD 设计的植入物和股骨 CT 扫描,生成用于微动分析的有限元模型。模拟结果生成的响应面证实了位置变化对微动的影响。 亮点 在Simpleware软件中整合CAD植入物和股骨CT扫描在Simpleware软件中生成FE网格通过脚本自动生成多组植入物位置/方向在ANSYS Workbench中进行植入物微动的模拟对结果进行后处理并生成响应面预测植入物位置的最佳和最差情况 图像处理和CAD整合 使用Simpleware ScanIP和Simpleware CAD将由CT扫描进一步处理获得的分割后的股骨模型与CAD设计的植入物结合。然后利用Simpleware FE生成有限元网格,导出至ANSYS Workbench中进行微动模拟。通过Simpleware API运用Python脚本自动生成多个植入位置,而无需耗费大量时间手动调整。 图:使用Simpleware CAD将分割后的股骨与CAD设计的植入物结合 FE网格生成 在本例中,为每个植入位置生成有的限元网格包含股骨的约10000个节点和38000个单元,钛金属植入物模型约2000个节点和6000个单元。采用Simpleware软件的自动转换算法基于原始扫描的CT值(Hounsfield单位,HU)为股骨分配标准材料属性。为模拟约束和加载条件给植入物和股骨添加节点集,在植入物—骨界面处的网格细化也增加了模拟的真实性。 图:使用Simpleware FE对股骨和植入物进行网格划分 应力分析&响应面模型 将初始的有限元模型导出至ANSYS Workbench,在上千个可能的候选的基础上产生成功的微动模拟。利用Kriging回归法对425个成功模拟点进行插值,生成响应面模型(RSM)。 ANSYS Workbench模拟可以利用RSM确定导致微动最高和最低可能值对应的植入位置。外科医生可以根据这些结果解释和预测植入物的最佳和最差位置。 图:在ANSYS Workbench中获得的最佳位置(左)和最差位置(右) 结果:最佳/最差的植入位置 利用Simpleware软件和ANSYS结合图像数据与有限元分析,成功地开发了一种用于分析植入物与股骨间相互作用的自动化工具。采用的响应面方法使人们深入了解微动对定位的敏感性。 随着该工具可行性的建立,进一步的工作可以集中在研究多个植入物设计在患者群体的分析。因此除了植入物研发之外,该工具在手术规划方面也有非常重要的应用。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/total-hip-replacement.html。

探究睡眠呼吸暂停【Simpleware应用】

Posted · Add Comment

概述 理解如何维持气道通畅的基础是咽部被动机械变形对上气道塌陷的作用进行分析。本项研究首先在 Simpleware 软件中使用 CT 扫描数据创建了精细的 3D 解剖模型,然后采用有限元分析(FEA)方法研究变形情况。结果与体内试验及文献报道吻合较好,可以作为更全面地模拟人上气道塌陷和治疗阻塞性睡眠呼吸暂停的起点。 亮点 从 CT 获取人体上气道图像数据在 Simpleware ScanIP 中重建 36 个不同的解剖结构在 Simpleware FE 中生成有限元网格并施加内气道压力边界条件在 ANSYS Workbench 中进行气道变形模拟 图像处理和网格生成 采用多层螺旋 CT 扫描仪获取一例 79 岁男性的正常气道 CT 扫描数据。通过 Simpleware ScanIP 对 DICOM 文件进行三维重建和分析。对整个图像应用二值化的中值滤波以降低噪声;采用噪声曲率流滤波器促进区域内平滑、抑制区域间平滑、去除噪声,增强灰度边界。对36个单独的组织、骨骼、软骨、韧带、肌肉和膜的解剖结构进行分割。采用递归高斯平滑对分割后的结构进行平滑处理,进一步降低噪声水平,减弱锐利的边缘。将模型的下侧裁剪至声带附近,从而减少 FEA 的计算需求。 图:用于 FEA 的三维模型渲染图。每个数字和不同颜色代表特定的解剖结构。 使用 Simpleware FE 创建由正四面体单元组成的网格,进行局部网格细化和额外的网格改进措施。多部分网格在接触界面上具有共享节点,在气道壁上定义的节点集施加内气道压力边界条件,并在立方体域边界与模型的界面处定义节点集;在这里也采用了固定边界条件。 模拟结果 划分的网格和节点集以 .cdb 格式导入 ANSYS Workbench 进行模拟。在 Image J 中分析横截面积,证明网格已收敛。在小变形的限制下估算被动咽部组织的性质,以线性弹性作为合理假设。 在不同气道压力下分析口咽部和腭咽的横截面积,确定大气压(零)附近的面积随压力的变化斜率,并与已发表的放松状态下已麻醉正常人的体内实验数据进行比较。研究结果提供了新的理解,有助于进一步基于图像建模研究,也有助于针对口腔压力治疗设备进行新型医疗器械设计。 图:在基于三维 CT 的人咽部有限元模型中,整体和定向局部变形的矢状断面视图。(A)总变形;(B)横向变形;(C)前后向变形;和(D)垂直向变形 参考 致谢请参考英文原文;Carrigy, N.B. et al., 2016. Simulation of muscle and adipose tissue deformation in the passive human pharynx. Comput Methods Biomech […]

增材制造个性化骨增量钛网的工程实现【Simpleware应用】

Posted · Add Comment

简介 引导骨组织再生(guided bone regeneration,GBR)是一种口腔种植骨增量技术,在骨缺损区利用屏障膜维持空间并阻挡增殖较快的上皮细胞和成纤维细胞长入,保证增殖速度较慢的成骨细胞优势增长而形成骨。随着增材制造(常被称为“3D打印”)技术的发展,可利用计算机辅助设计(computer aided design,CAD)设计出与患者颌骨形态贴合并且具有预期骨增量水平的个性化钛网模型,在激光的作用下通过材料逐层累积将其“打印”出来,最终将这种个性化骨增量钛网用于引导骨组织再生手术。与传统钛网相比,增材制造的个性化骨增量钛网更加贴合骨缺损部位,极大缩短手术时长并降低钛网暴露率,尤其适用于大面积、解剖形态复杂的骨缺损病例。 个性化骨增量钛网工艺研发 对于增材制造个性化骨增量钛网产品,研发工程师与口腔种植科的临床医生和影像科医生组建钛网项目团队,经由主治医生获得患者的影像数据(CBCT产生的“.DICOM”数据)及其对患者预期骨增量的要求,同时主治医生还会提供患者的口内扫描数据、修复体和种植体规划数据等作为钛网设计的参考模型。研发工程师将“.DICOM”数据导入到Simpleware Scan IP软件中进行解剖结构的三维模型重建,包括患者骨缺损处的颌骨、邻牙及牙根、神经管(下颌病例)并将其导出为“.STL”格式的三维模型。使用光敏树脂材料将带邻牙的颌骨模型增材制造出来,用于个性化骨增量钛网的试配。以口腔修复为导向,根据主治医生预期骨增量要求,以及钛网与邻牙、神经等解剖结构的位置关系,同时考虑固定钛网用的钛钉尺寸和位置,设计出钛网的轮廓面。在Solidworks 软件中将钛网网孔的单胞结构填充于钛网轮廓面上并增加钛网的厚度为0.3~0.4 mm,导出“.STL”格式的钛网模型。下图显示了个性化骨增量钛网的设计模型及其与颌骨、钛钉和骨粉配合在一起的示意图。个性化设计出来的钛网模型可以进行有限元分析和静力学计算,以评估钛网植入后的生物力学性能。 图:个性化骨增量钛网的增材制造 图:个性化骨增量钛网设计模型,包括有严重骨缺损的下颌骨、个性化骨增量钛网、钛网固定钛钉和人工骨粉 在完成钛网的CAD设计和CAE仿真后,将钛网模型(“.STL”格式)进行增材制造工艺支撑和打印布局的设计,钛网及其工艺支撑按照25μm厚度进行切片,切片后的数据导入至增材制造设备MLab中,使用医用纯钛材料进行增材制造,所得产品在热处理后进行线切割和去支撑,经过打磨后进行喷砂处理,最后进行超声清洗以及灭菌杀毒,使用无菌包装将其封闭。主治医生在种植手术时将个性化骨增量钛网拆除包装直接植入患者口腔,在手术完成后拍摄即刻CBCT。 骨缺损颌骨三维重建和个性化骨增量钛网设计 根据每位患者的CBCT数据三维重建生成骨缺损颌骨模型,使用光敏树脂材料增材制造出用于个性化骨增量钛网试配和术前评估;依据临床要求对骨缺损颌骨进行“数字雕刻”,即通过模拟现实中蜡型雕刻方式制作数字化的模型,设计出满足预期骨增量要求的“完美”颌骨,在此基础上完成个性化骨增量钛网的模型设计。相较于传统钛网,采用“全程数字化”技术设计和制造的个性化骨增量钛网更贴合患者牙槽骨形态,避免了术中需要折弯剪裁的复杂步骤,节省大量手术时间;个性化骨增量钛网适合多种复杂骨缺损病症,为引导骨再生手术提供稳定的成骨空间,实现了种植术后功能重建和美学的可预期性。 图:由患者CBCT数据重建而成的骨缺损颌骨和个性化骨增量钛网模型 为了提高设计效率同时有效减小“金属伪影”对模型尺寸精度的影响,工程师开发出基于神经网络的深度学习算法,对目前已处理的200多例患者CBCT数据进行精准标注和训练,产生预训练模型用于解剖结构的分割、检测和分类任务,最终实现自动生成骨缺损颌骨和邻牙的精准三维模型。 结论 根据患者的解剖结构和预期的骨增量水平定制式设计出个性化骨增量钛网,通过有限元分析对钛网的设计模型进行验证,通过增材制造的工艺将其生产出来,同时在生产过程中增加“随炉试样”用以验证钛网成品的理化性能。增材制造的个性化骨增量钛网可以获得满足临床应用要求的性能,其临床上的长期有效性有待钛网植入后进一步的随访观察。 参考 张立强:增材制造个性化骨增量钛网的工程实现。中国口腔种植学杂志 2021 年 12 月第 26 卷第 6 期,第354~361页。

膝关节置换模拟

Posted · Add Comment

患者个性化外科手术规划 360 Knee Systems 公司专注为全膝关节置换手术提供创新的技术解决方案。他们与骨科医生通力合作,提供动态、实用、针对患者的规划和模拟解决方案。 借助于 Simpleware 软件,360 Knee Systems 开发了针对患者的术前计划,这些计划依赖于创建患者骨骼几何结构的准确描述,以解决全膝关节置换手术的固有挑战。 特点 获取患者骨骼 CT 扫描结果在 Simpleware 中生成患者骨骼的三维模型进行分析和仿真科技使外科医生能够对患者进行个性化分析,从而优化手术计划和程序基于模拟的输出设计患者的个性化导板 生成3D模型 360 Knee Systems 获取患者髋部、腿部和踝关节骨骼的CT扫描,并将其导入 Simpleware ScanIP 中生成 3D模型,捕捉解剖结构的不同细节,达到了高质量和高细节的水平。然后使用 Simpleware CAD 模块执行基本的 CAD 操作,在患者解剖结构内定位植入物。精确的模型确保了模拟能够真实地进行。 图:Simpleware ScanIP中的膝关节分割 标注 为了能够更轻松地执行可重复性的操作,360 Knee Systems 与 Simpleware 的服务团队合作编写脚本,如优化分割过程和标记扫描的骨骼。在模拟中需要用到标志点创建轴和参考,因此精确的标志点是结构分析的关键。脚本的使用则大大减少了此任务所需的手动工作量。 图:在Simpleware ScanIP中为分割后的膝关节设置标志点 创建规划和导板 外科医生使用在 Simpleware ScanIP 中生成的 3D 模型为患者创建个性化导板。每个导板都是根据该患者的特定骨骼结构量身定做,旨在帮助医生确定合适的手术切口。360 Knee Systems 运用这些模型为膝关节植入物的最佳放置位置提供术前规划,外科医生也可以在术前就熟悉患者的骨骼结构。3D 打印的导板可以用来演示植入物的髌骨、股骨和胫骨组成部分的精确切割位置。 参考信息 致谢和更多信息请参见英文原文:https://www.synopsys.com/simpleware/resources/case-studies/knee-replacement.html

患者复杂主动脉夹层的血流动力学模拟

Posted · Add Comment

概述 对于希望虚拟重现主动脉夹层疑难病例患者主动脉内血流这个目标来说,Simpleware ScanIP 是一个不可或缺的宝贵工具,它不仅能够准确地提取这些患者复杂的主动脉几何结构,而且还提供了重要的形态和功能信息,这对于建模工作流程至关重要。 亮点 开发工作流程实现由非侵入性临床数据获得主动脉夹层的个性化计算流体力学(CFD)模型使用 Simpleware ScanIP 从 CT 图像中提取三个复杂研究个案患者的特定结构使用 ANSYS® CFX 完成 CFD 模拟,提供的血流动力学方面见解可以增强临床认识、支持决策过程。 介绍 主动脉夹层(AD)是一种可危及生命的血管疾病,发病率和死亡率都很高。在 AD 中,主动脉内膜层的撕裂导致血液在血管壁内流动,产生两个或更多流道,真腔(TL)和一个或多个假腔(FL)被内膜皮瓣(IF)隔开。主动脉夹层的形态高度复杂且具有患者特异性,通常由多个IF撕裂表现为曲折的FL与TL相连。这种复杂的环境产生异常的血流动力学应力(如压力和剪切应力),从而驱动疾病演变。目前,成像技术无法准确评估体内血流动力学。然而,临床图像和计算流体动力学(CFD)的结合可以提供重要的预后见解,从而支持这种危及生命疾病的临床决策过程。 工作流程说明 开发主动脉夹层 CFD 模型生成和个性化的工作流程。涉及的步骤: 利用 Simpleware ScanIP 重建患者特定主动脉的 CT 扫描几何结构为模拟特定患者主动脉的血流动力学包络调整 CFD 模型的边界条件在 ANSYS 软件中求解计算模型并进行结果的后处理 借助Simpleware ScanIP进行结构分割 将临床 CT 扫描的 DICOM 文件直接导入 Simpleware ScanIP 中,采用中值滤波处理,降低图像的“椒盐”噪声。对于以主动脉及其主要分支为代表的感兴趣区域,首先采用自动阈值算法(即 floodfill)分割,然后手动细化,以准确描述 IF 及其撕裂。为消除像素伪影,对生成的掩模采用平滑算法,然后通过 Simpleware ScanIP 中的自动工具垂直于脉管中心线裁剪,从而创建 CFD 模型的流入和流出边界。然后将患者特定的主动脉夹层面模型作为建立模型导入 ANSYS®软件。 图:主动脉夹层的分割:(a)CT数据的渲染;(b)平滑后的分割掩模;(c)模拟中使用的三维模型 图:对3个研究案例进行几何重构,箭头表示内膜瓣内撕裂的位置 CFD模型的设置和个性化 CFD […]

用于模拟起搏器性能的躯干模型

Posted · Add Comment

概述 MicroPort 是一家在全球范围内为患者开发救生医疗产品的公司。MicroPort 也是专业生产治疗心律紊乱和心力衰竭的心律管理设备(CRM)制造商。该公司使用 Synopsys 的Simpleware 软件对复杂的起搏器几何结构进行建模,以便更好地理解患者心动过缓和心动过速等情况的治疗方法。MicroPort通常要对研发设备进行既昂贵又耗时的动物测试,在试图减少错误时承担着重大的伦理风险。而基于图像的有限元仿真提供的另一种测试方法,能够减少对动物测试的依赖,降低设备故障风险,并且没有与动物测试类似的伦理风险。 亮点 使用人体模型的仿真减少动物试验需求仿真过程快速、高效、成本低Simpleware 软件可在网格划分前修复模型Simpleware 软件的模型为仿真提供了直接路线 处理躯干模型 MicroPort 由 IT’IS 基金会和美国食品药品监督管理局提供的数据集开发出逼真的几何结构,从而开始了他们的模拟过程。利用 Simpleware 软件先对原始 STL 文件进行处理,分割出用于仿真的感兴趣的区域。Simpleware 软件的易用性允许其对单个部位三角剖分错误(如孔洞、顶点到顶点的连接和非流形边)进行修复。在 Simpleware 软件中进行的处理操作能够使 STL 数据更适合网格划分和仿真。 图:在Simpleware软件中对原始几何结构进行处理,为仿真准备网格 创建稳健的FE模型 对图像数据分割后,在 Simpleware 软件中导出用于仿真的模型:用于 COMSOL Multiphysics 的体积网格和可用于几何结构编辑和重新划分网格的 NURBS IGES 文件。Simpleware 的网格可以保证严密性、光滑且精准的几何结构以及无缝隙的正确拓扑结构。这种高质量的网格划分水平使 COMSOL Multiphysics 中的网格能够为电磁(EM)仿真做好充分的准备。 图:Simpleware 软件为 COMSOL Multiphysics 导出稳健的模型 生成人体心脏模型 为了改进仿真细节,需要使用 Simpleware 软件处理从单独的数据集中创建的心脏模型。主要任务是在原始心脏模型中添加腔室,并使用图像处理工具从图像数据中去除不必要的细节。Simpleware 软件可以将腔室的分割和模型外表面向实体的封闭以单独的 NURBS 文件形式导出至 COMSOL。 图:将 NURBS […]

用于3D打印的乳腺肿瘤分割和建模

Posted · Add Comment

概述 3D打印解剖模型逐渐开始对医学产生重大影响。在本案例中,研究的对象是正在治疗肿瘤的乳房模型,因此患者能够更好地理解医生提出的诊断和后续治疗方案。同样地这些模型也有助于医生更好地观察的病理解剖结构。 亮点 ScanIP软件为肿瘤的可视化提供高效、精准的三维模型医生对3D打印模型的质量非常满意3D打印模型是理解治疗程序的重要工具模型为医生研究复杂手术的病理提供更多资源,从而减少手术时间和风险 介绍 癌症诊断始终都是一个难以面对的现实。对于大多数患者来说,面对陌生的医疗环境和医学术语,很难在没有“癌”的压力下进行思考。此外,大多数疾病的治疗高度依赖于患者对处方方案的依从性。这就需要患者和主治医生之间建立信任的伙伴关系,推进有效的沟通和可靠的随访。患者教育是建立准确认知所面临的挑战、治疗计划如何应对挑战以及患者和医生扮演不同角色的必要步骤。 3D打印的实物模型已被证明是一种高效的教育工具,能够更好地可视化病理解剖结构。本案例研究使用Simpleware软件中的分割工具快速生成一个乳腺癌患者的乳房和肿瘤的三维模型,由3D打印模型的展示通过患者教育建立共同基础。本案例还验证了增强医生对肿瘤位置和形状空间概念化的额外好处。 图:在Simpleware ScanIP中对MRI扫描的DICOM数据进行分割,生成2个3D模型:患者左侧乳房的模型和内部肿瘤的模型 MRI数据以DICOM格式获取并导入Simpleware ScanIP中进行分割。调整Window/Level设置实现最佳视图,使用Threshold工具设置灰度值范围,区别出广泛的乳腺组织和肿瘤。Crop工具可以将左侧乳房作为感兴趣区域单独裁切出来。分别在肿瘤掩模和乳房掩模上应用Mask Flood Fill工具,确保肿瘤和乳腺组织的分割清晰。 此填充的步骤确保掩模数据中只保留连通的体素。使用形态学的Close和Cavity Fill工具有效地填补掩模连续性上的空白,进一步优化掩模的完全覆盖。Paint工具允许用户通过主观认知判断对掩模进行最后的润色,确保按照需求对体素进行掩膜或去掉掩膜。在图像中完成乳房和肿瘤区域的遮挡,使用Resample工具对体素进行各向同性渲染。先用Dilate使掩模平滑,然后用Recursive Gaussian Smoothing生成一个干净、平滑的面。最后将掩模导出为STL模型,以便在打印前做进一步处理。 模型生成 分割后导出两个stl面模型:乳房和肿瘤,然后将它们导入Autodesk公司的Fusion 360®中做打印前的进一步修改。将乳房模型设计为中空的,打印的部分将呈现普通的外形但没有内部填充,因此肿瘤模型可以单独展示也可以嵌套在乳房模型内部。打印完成后还设计了一个柱状物连接肿瘤和乳房模型。该柱状物能够保证打印的肿瘤准确地显示在正确位置,乳房模型被分为两部分,方便观察。 图:将乳房的3D模型处理为中空的,并设计一个柱状物在打印后将肿瘤模型固定到乳房模型上 3D打印 将模型导入Stratasys GrabCAD ™中进行排列、处理,然后发送到3D打印机。这些模型是在Stratasys J750™打印机上使用Vero材料打印的,可以是选择从透明到黑色的多种颜色。 图:乳房模型用透明材料打印,肿瘤则是不透明材料。柱状物可以使肿瘤模型快速、准确地固定在乳房模型内。这些模型易于操作,可作为视觉辅助工具呈现。 模型的三个部分很容易组合在一起,乳房的两部分也能够对齐。在之后的迭代中还可以添加设计特征,如果有需要也可以把它们结合起来。将带有柱状物的肿瘤模型安装在有设计预留柱孔的乳房模型,使得模型间的配准简单又快捷。将柱状物放在孔洞后,肿瘤即可处于相对乳房模型的适当位置。乳房模型中肿瘤的大小和位置是打印模型最重要的意义,因此一个包含肿瘤和乳房的比例模型和简单的空间定位机制就可以使设计即刻变得实用。 医生反馈 合作医生对打印结果印象深刻,并发现了超出本项目范围的益处。他们证实模型在协助外科医生规划和沟通切除途径和其他治疗方式方面的效用,加深患者对病理学含义理解的潜力也激发了医生。通过可视化增强患者的理解有助于医患之间就各种治疗方案的需求和影响进行对话。 例如,可视化肿瘤的大小和位置可以促进关于肿块切除术(切除肿瘤)或乳房切除术(切除整个乳房)决定的沟通。这种对话很敏感,而可视化则是一个有效的工具。此外,视觉辅助工具可以通过更好地了解治疗方案的目标来帮助提高患者的依从性和信心。 结论 这种可视化人体解剖学的方法具有深远的意义。在这里,我们讨论了对患者教育的影响,但在医生指导方面还有更多工作可以开展。同时也可以改进医生教育,因为病理模型和周围组织可以采用能够模仿其外观和触觉特性的材料打印。使用多模型、多材料打印制作患者个性化手术模型,将加强医生治疗复杂问题的能力,可能减少手术时间,减少对周围组织的附带损伤,通过直接在患者病理学模型上实践从而增强治疗效果。 高效地生成分割模型的另一个潜在用途是患者的个性化生物打印。对健康组织和病变组织进行建模获得的数据可用于生物打印替代组织,在之后植入以取代或再生感染区域。不同于将模型切片后用塑料打印,生物打印过程采用生物降解塑料和水凝胶,按照设计的组织模式打印多种细胞类型,生成特定的功能性组织。 3D打印解剖模型正逐渐开始对医学产生重大影响。患者个性化模型打印的第一步是患者影像数据集的分割,可打印模型由图像数据的分割部分快速产生,Simpleware ScanIP可以使该过程简单高效。包含治疗中肿瘤的乳房模型能够更好地理解医生提出的诊断和后续治疗方案,同时也有助于医生对病理解剖进行可视化。 参考 Kengla, C., Renteria, E., Wivell, C., Atala, A., Yoo, J.J., Lee, S.J., 2017. Clinically Relevant Bioprinting Workflow and Imaging […]