研究背景 在近年来二维材料研究的迅猛发展中,二维磁性半导体因其在自旋电子学和光电子学领域的潜在应用而受到广泛关注。CrSBr 作为一种新兴的二维铁磁材料,兼具层状结构、稳定的磁序和各向异性的电子性质,为实现多功能集成器件提供了理想平台。特别是在无外加电压条件下实现的自驱动光电流效应,能够显著降低器件功耗,是发展新一代低功耗光电器件的重要方向。同时,纯自旋光电流的产生可避免能量损耗与散射限制,有望在自旋输运、信息存储与量子计算等前沿领域发挥关键作用。 然而,在传统二维材料中实现纯自旋光电流面临诸多挑战,如缺乏稳定磁序、对称性抑制光生自旋分离等问题。研究发现,通过施加应变或引入弯曲形变,可以有效打破材料的空间反演对称性,从而诱导内部电场并激发新型光电效应。因此,探索在二维磁性材料中通过弯曲构型实现自驱动且自旋极化的光电响应,具有重要的理论价值与应用前景。该工作正是在这一背景下开展,旨在揭示弯曲 CrSBr 单层中自驱动纯自旋光电流的物理机制,并推动二维材料在低维自旋光电子器件中的应用探索。 研究内容 本研究基于第一性原理计算与非平衡格林函数方法,系统探索了在机械弯曲条件下,CrSBr 单层中产生自驱动纯自旋光电流的物理机制。研究发现,非弯曲 CrSBr 单层的实空间电荷密度分布图中,S 原子和 Br 原子都参与了 VBM,CBM 由 Cr 原子组成。然而,弯曲后单层 CrSBr 的电荷密度分布却发生了令人兴奋的变化。屈曲后,VBM 占据结构左侧,CBM 占据另一侧。随着弯曲深度的增加,电子-空穴分离更加明显。 图1. 单层 CrSBr 的(a)俯视图与侧视图(b)能带结构及轨道投影态密度(c)CBM 与 VBM 的实空间分布(d)挠曲深度 d=11 Å 时的 CBM 与 VBM 实空间分布(e)d=11 Å 上下表面应力分布示意图 弯曲 CrSBr 左右两端的 α 自旋(β 自旋)能带边位置呈交错的 II 型能带排列,即弯曲导致结构左右两端的导带和价带发生漂移。这意味着弯曲结构具有更多的光生载流子,激子寿命得以延长。这一特性对于光电子器件至关重要。 图2. 挠曲深度 d=11 Å 时单层 CrSBr 中 α 和 β 自旋沿 z 轴方向的投影能带结构 内部和外部应变梯度导致器件结构的不对称增强,价带和导带附近的子带增多,以及结合态密度增加,从而获得光伏效应。 图3. (a)基于单层 CrSBr 的偏振器件示意图(b)无外加电压时 CrSBr 挠曲器件的光电流密度(c)挠曲光伏效应引发自供电行为的机理图(d)α 和 β 自旋在布里渊区高对称点处最高价带与最低导带之间的跃迁矩阵元(e-f)d=11 Å 时挠曲结构的 α 和 β 自旋的能带结构及态密度 基于柔性光伏效应,挠曲 CrSBr 消光比大大高于其他材料,且 CrSBr 弯曲光电器件在低光子能量范围内具有良好的单自旋滤波效果。 图4. (a)α 与 β 自旋的消光比(b)偏振角 0° 与 90° 时光电流密度的自旋极化率 总结 本研究基于第一性原理计算与非平衡格林函数方法,系统探索了在机械弯曲条件下,CrSBr 单层中产生自驱动纯自旋光电流的物理机制。研究发现,弯曲形变打破了材料的空间反演对称性,在体系内部诱导出有效电场,驱动光生载流子分离,从而实现无需外加偏压的光电流响应。进一步分析表明,该光电流具有明显的自旋极化特征,表现为纯自旋光电流的产生。此外,研究还揭示了该效应依赖于入射光的极化方向,展示出高度的偏振选择性。该工作不仅提出了一种结合机械调控与光自旋效应的新机制,也为设计低功耗、高灵敏度的二维自旋光电子器件提供了理论依据。 参考文献 Chen H, Chen L, Chen L, et al. Self-Powered Pure Spin Photocurrent in Bent CrSBr Monolayer[J]. Physical Review Letters, 2025, 134(24): 247001. https://doi.org/10.1103/s8qn-n8tr