ReaxFF Highlight:化学气相沉积形成氮化硼晶核( J. Phys. Chem. C,2018)

Posted · Add Comment

文献资料:B. D. McLean, G. B. Webber, and A. J. Page, Boron Nitride Nucleation Mechanism during Chemical Vapour Deposition, J. Phys. Chem. C 122, 24341 (2018) 澳大利亚Newcastle大学的研究人员,使用非平衡的ReaxFF分子动力学模拟,首次展示了氮化硼(BN)纳米结构,通过氧化硼化学气相沉积(BOCVD),在原子水平上如何形成。这些模拟结果修正了以往实验中所建立的BN生成机理:H2和H2O蒸气的形成,在相互独立、相互竞争的反应通道发挥着关键作用。而实际上,H2O的形成促进了BN键的形成和BN环的缩合,而H2的形成则促进了BxOx链的自组装形成B纳米催化颗粒。BN最初形成一种高度缺陷、几乎无定形的材料,之后逐渐“愈合”成清晰的网络结构。这种过程发生在纳秒时间尺度(和更长的时间)上,使得ReaxFF成为研究它们的理想方法。 本文使用Amsterdam Modeling Suite中的ReaxFF模块完成。 用户可以自行下载分子结构尝试: B2O2 B2O2 + NH3 NH3 + BxOy with a higher B/O ratio

BAND Highlight:通过对扩展系统的能量分解分析,推导分子、表面和固体的成键概念(WIREs Comput. Mol. Sci., 2018)

Posted · Add Comment

文献资料:Lisa Pecher, Ralf Tonner, Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems, WIREs Comput. Mol. Sci., 2018 化学键的概念,如共价键、离子性、泡利排斥、共享电子,或施主-受体键,是对我们丰富的化学知识进行归纳,以及预测新反应活性的重要工具。电子结构分析为理解这些概念的根源提供了基础。能量分解分析(EDA)是一种成熟的分子分析方法,最近在表面和固体中得到了应用,被称为周期性EDA(pEDA)。本文概述了该方法的基础和应用,该方法可用于推导成键的概念。在分子和固体化学中,用于研究分子与表面的吸附和反应(例如有机分子与半导体表面的相互作用)。基于电子结构分析和定量方法的支持,我们证明了类似键的概念可以应用在不同的化学环境中。 BAND中的pEDA方法已经被成熟地应用。

ReaxFF Highlight:纳米纤维素−氧化石墨烯的生物杂化:先进显微镜技术与ReaxFF模拟揭示自组装和铜离子吸附(ACS Nano, 2018)

Posted · Add Comment

文献资料:Chuantao Zhu, Susanna Monti, and Aji P. Mathew, Cellulose Nanofiber−Graphene Oxide Biohybrids: Disclosing the Self-Assembly and Copper-Ion Adsorption Using Advanced Microscopy and ReaxFF Simulations, ACS Nano 2018, 12, 7028−7038 纳米纤维素和氧化石墨烯自组装成高孔生物杂化材料,促进了多功能膜的设计和合成,以及水污染物治理。在纳米和分子尺度上,自组装、金属离子捕获和生物杂化形成团簇的机理是相当复杂的,它们的阐明需要从实验数据和计算模拟相结合得到证据。 本文通过原子力显微镜(AFM)对(2,2,6,6-四甲基哌啶-1-氧基)介导的氧化纤维素纳米纤维(TOCNFs)、氧化石墨烯(GO)及其生物杂化膜的微拷贝研究,获得了强有力、直接的自组装证据;小的GO纳米粒子首先沿着单一的TOCNF纤维附着、积累,长而柔的TOCNF以丝状缠绕在宽而平的GO平面上,从而形成一个无定形的多孔生物杂化网络。 利用先进的显微技术研究了Cu(Ⅱ)吸附前后TOCNFs和GO膜的自组装及其表面性质,并通过Amsterdam Modeling Suite中的ReaxFF模块进行分子动力学(MD)模拟进一步阐明了TOCNFs和GO膜的层状结构。 MD模拟确认了TOCNF和GO膜在溶液中捕获Cu(Ⅱ)离子,以及干燥过程中离子团簇形成的动力学过程。这项多学科研究的结果,使这项研究向前迈进了一步,揭示了生物种属自组装行为的具体方面,并提出了有效的设计策略,为工业应用控制孔径大小和强健材料。

ADF Highlight:可见光介导的铜催化酚与炔偶联反应机理(JACS, 2018)

Posted · Add Comment

文献资料:Pin Xiao, Chun-Xiang Li, Wei-hai Fang, Ganglong Cui, and Walter Thiel, Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes, J. Am. Chem. Soc., Just Accepted Manuscript 最近一项实验研究报道了一种可见光介导的酚与炔的好氧氧化偶联反应,该反应在温和的条件下以廉价的CuCl为催化剂生成羟基功能化的芳基酮。北京师范大学崔刚龙老师课题组使用完全活性空间自洽场(CASSCF)方法和多态二阶微扰(MS-CASPT 2)理论,结合密度泛函理论(DFT),系统地研究了分子氧和CuCl存在下酚与苯乙炔在乙腈溶液中的光催化反应。 主要研究结果如下: (1)可见光驱动苯乙炔转化为PhCCCu(I)是由于激发态高效失活到S0态而发生的。 (2)在高效S1→T1系间窜跃后,PCCCu(I)单电子转移到分子氧,形成PCCCu(II)离子。 (3)在苯酚的初始氧化过程中,分子氧倾向于攻击酚自由基中间体的对位,生成1,4-苯醌,进而与PhCCCu(II)反应生成对羟基取代的芳基酮,这是实验观察到的区域选择性的来源。 (4)苯乙炔分子的C≡C键不是由PCCCu(I)到分子氧的三重态单电子转移激活的,而是在PCCCu(II)与1,4-苯醌[2+2]环加成反应后期被裂解的。 (5)底物酚在几种氢转移和脱羧反应中起着积极的作用,这些反应的能垒低于相应的直接或水辅助反应,解释了添加水并不能提高光催化反应产率的实验结果。 总之,在支持实验提出的机制的一般特征的同时,我们的计算研究提供了详细的机制认知,有助于理解和进一步改善可见光诱导的铜催化偶联反应。 本文使用了ADF的相对论方法ZORA、碎片轨道分析,以及能量分解EDA、ETS-NOCV分析。

BAND Highlight:诺贝尔奖得主 Roald Hoffmann对金属卤化物钙钛矿中成键“镜像”现象的研究(JACS, 2018)

Posted · Add Comment

文献资料:Maarten G. Goesten, Roald Hoffmann, Mirrors of Bonding in Metal Halide Perovskites, J. Am. Chem. Soc., 2018, 140 (40), pp 12996–13010 诺贝尔奖得主Roald Hoffmann是Amsterdam Modeling Suite(AMS)的忠实用户,Roald Hoffmann在本文中使用了AMS中的BAND模块的新功能Crystal Orbital Overlap Populations(COOP),结合基于对称性的成键分析,对卤化物钙钛矿的成键与能带特性进行了定性与定量计算分析,展示了金属-卤化物轨道相互作用如何产生能带的“镜像”现象、如何控制带隙,并展示了相对论效应对该体系能带结构与带隙的显著影响。 镜像是由Pb的6s与Br的4p组合产生的,它在布里渊区内移动的机理也得到清楚的阐释。阳离子替换为有机阳离子时,镜像现象仍然存在,即使晶格发生一定程度的扭曲也仍然存在这种现象。本文预测了当Pb2+替换为Sn2+或Ge2+,以及更换卤素,对能带的影响。本文也研究了最低的三个导带,发现了第二个镜像。对CsPbBr3而言该镜像由Pb的6p和Br的4p结合产生。 理解这些镜像的形成、在倒空间的移动,从而设置导带最低值,可以让我们看到为什么是直接带隙。BAND的轨道分析功能,为这类热门材料的能带工程提供了化学的、直观的图像。 本文COOP功能的原始计算数据重现教程(请点击)

ADF 2018 新版发布更名为Amsterdam Modeling Suite

Posted · Add Comment

概述 ADF作为世界上最早的密度泛函软件,从上世纪70年代初诞生以来,在逐渐强大的开发团队的支持下,在计算理论、方法、计算分析工具、图形化用户界面方面,不断快速的发展。当初它只是一个非周期性体系(例如分子、团簇)的密度泛函计算程序。70年代,它的名字叫做HFS,后来更名为Amol,再后来更名为ADF。 90年代,创始团队(E.J. Baerends等)首次提出了相当精确的处理电子相对论效应(尤其是自旋轨道耦合)的理论 Zero Order Regular Approximation(ZORA),并将其在ADF中实现,成为至今最流行(没有之一)的处理自旋轨道耦合的方法。2017年,最新、最先进的相对论密度泛函方法X2C在ADF中实现。在计算化学领域中,精度与效率常常是一对矛盾,一般而言精度高则效率低,反之亦然。而X2C在精度与效率方面,皆远优于ZORA,是一个极为天才的全新方法。2000以后,更多的计算模块,例如自行开发的周期性体系密度泛函计算的BAND、流体热力学程序COSMO-RS,以及其他研究组发展的流行程序,如反应力场ReaxFF、Quantum Espresso、MOPAC、DFTB也逐渐纳入其中。功能模块越来越丰富,但此时整个软件平台的名字还是叫ADF,其中最早的模块也叫ADF。如同最开始一样,ADF并没有将自己定位为一个“程序打包商”。在计算理论与方法上,它从来没有停止过创新。能量分解方法(EDA)、成键分析工具ETS-NOCV等化学分析方法,不仅被集成到ADF模块中,还被创造性地应用于周期性体系的密度泛函计算中,使得BAND成为一个极具特色、功能强大的周期性体系化学问题研究工具。近两年BAND的功能突飞猛进,使用BAND完成的创造性的杰出工作开始出现在JACS、Angew. Chem. Int. Ed.等重要化学期刊。 为避免ADF软件平台与其中ADF模块重名,同时也因为其他模块越来越强大、完善,2018新版发布,ADF软件平台更名为Amsterdam Modeling Suite,简称AMS。各个模块名字,如ADF、BAND、COSMO-RS等保持不变。 AMS 2018 新功能概览: Amsterdam Density Functional (ADF) 在考虑COSMO溶剂化模型,或者使用某些range-separated泛函时,也可以进行激发态结构优化、频率、Linear transit、过渡态搜索等计算 激发态分析:电荷转移描述符、片段分析、eXcited Constrained DFT、电荷转移 其他分析工具:移除空轨道的能量分解、NBO6更新升级 新的快速计算金、银团簇体系紫外可见吸收光谱的方法:POLTDDFT Ab Initio分子动力学 Periodic DFT: BAND 与 Quantum ESPRESSO 弹性张量及其相关性质,例如体积模量 分子动力学 Linear transit与势能面扫描(PES) Crystal Orbital Overlap Populations (COOP) LDOS(STM成像) 外加压力下的结构优化 任意k点有效质量 自洽迭代改善 Quantum ESPRESSO版本更新到6.3版,包含CPMD功能 ReaxFF 新的加速反应的方法:Collective Variable […]

BAND Highlight:硅表面醚吸附-计算表面化学与分子计算化学共同点的最佳案例(Angew. Chem. Int. Ed., 2017)

Posted · Add Comment

文献资料:Lisa Pecher, Slimane Laref, Marc Raupach, and Ralf Tonner, Ethers on Si(001): A Prime Example for the Common Ground between Surface Science and Molecular Organic Chemistry, Angew. Chem. Int. Ed. 2017, 56, 15150 –15154 通过计算化学研究表明,在超高真空条件下,醚分子在Si(001)表面的吸附可以用有机化学的经典概念来理解。两步反应机理的详细分析:1)醚的氧原子与Lewis酸性表面原子之间形成的配价键(DB);2)附近Lewis碱性表面原子的亲核攻击表明,它反映了溶液中酸催化的醚裂解。 O-Si键是这类键中最强的,并且第2步的反应活性违背了Bell-Evans-Polanyi原理。本文使用一种新的键分析方法(pEDA-NOCV),对C-O键解离过程中的电子重排进行了可视化的研究。 结果表明,半导体表面亲核取代的机理与Sn2分子反应的机理是一致的。我们的发现表明了表面科学和分子化学如何相互受益,并得到意想不到的洞察方式。 BAND,是目前最先进的专注于材料化学计算研究工具。

ADF Highlight:钙锶钡配合物也遵守18电子规则(Science, 2018)

Posted · Add Comment

文献资料:Xuan Wu,  Lili Zhao,  Jiaye Jin,  Sudip Pan, Wei Li,  Xiaoyang Jin,  Guanjun Wang,  Mingfei Zhou, Gernot Frenking, Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals, Science 361, 912–916 (2018) 碱土金属钙(Ca)、锶(Sr)和钡(Ba)主要通过nS和nP价轨道进行化学键合(其中n为主量子数)。复旦大学周鸣飞老师课题组和南京工业大学Gernot Frenking与赵莉莉老师课题组报道了八配位羰基配合物M(CO)8(其中M=Ca,Sr或Ba)在低温氖基质中的分离和光谱表征。对这些立方Oh对称配合物的电子结构分析表明,M-CO键主要来自[M(dπ)]→(CO)8 π的反馈作用,从而解释了C-O伸缩频率的强烈红移。还制备了相应的自由基阳离子气相配合物,并通过质量选择红外光解光谱对配合物进行了表征,证实其遵守过渡金属化学有关的18电子规则。   本文使用了一种非常强大的研究化学成键细节的工具:ADF中的EDA-NOCV功能(在BAND模块中,该功能对周期性体系同样适用)。   EDA功能将金属与配体之间的相互作用能,分解为泡利排斥、静电作用、轨道作用,并得到分子轨道与碎片轨道之间的关系,而NOCV功能将轨道作用更详细地分解到具体的一对对相互作用的轨道中。   NOCV分析表明,M-CO键主要来自[M(dπ)]→(CO)8 π的反馈作用:   相关中文教程: ETS-NOCV功能案例:开壳层、闭壳层、环状结构 ETS-NOCV功能案例:二聚体能量分解(EDA)中轨道作用、电子在片段轨道间转移的分解 键能分解(EDA) NOCV理论

ADF Highlight:Au16(S-Adm)12与Cd1Au14(StBu)12的全结构确定以及Au15(SR)13结构的应用(JACS, 2018)

Posted · Add Comment

文献资料: Sha Yang, Shuang Chen, Lin Xiong, Chong Liu, Haizhu Yu, Shuxin Wang, Nathaniel L Rosi, Yong Pei, and Manzhou Zhu, Total Structure Determination of Au16(S-Adm)12 and Cd1Au14(StBu)12 and Implications for the Structure of Au15(SR)13, J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b04257 纳米团簇(例如Au15(SR)13)不但在生物领域的应用至关重要,也是理解金配合物向金纳米团簇转变机理的关键。然而这些过渡尺寸金纳米团簇的确定,一直以来是一个重大挑战。 本文得到了两个新的过渡区纳米团簇,包括迄今为止最小的合金纳米团簇Cd1Au14(StBu)12,以及同晶纳米团簇Au16(S-Adm)12,并通过单晶X射线衍射确定了它们的原子结构。此外,基于Cd1Au14(SR)12和Au16(SR)12的结构,湘潭大学裴勇老师课题组进行了DFT计算,预测了“转变”纳米团簇Au15的结构(Au15(SR)12–和Au15(SR)13)。这项工作,搭建了金配合物与金团簇之间桥梁。

ADF Highlight:两个莫比乌斯共轭纳米环组成的可分离环烷(Nature Comm.,2018)

Posted · Add Comment

文献资料: Yang-Yang Fan, Dandan Chen, Ze-Ao Huang, Jun Zhu, Chen-Ho Tung, Li-Zhu Wu & Huan Cong, An isolable catenane consisting of two Möbius conjugated nanohoops, Nature Communications, 9, 3037 (2018) 莫比乌斯拓扑,除了数学上的重要性外,在分子水平上也很吸引人,结构优雅而独特。然而合成却颇具挑战性。尽管一些莫比乌斯型分子已被化学家合成、分离,并进行了广泛的理论计算研究,但稳定的莫比乌斯共轭分子的设计、制备和表征至今仍是一项重要的任务,更不用说将分子莫比乌斯带组装成更复杂的拓扑了。 本文报道了由两个完全共轭的纳米莫比乌斯环组成的有机环烷的有效合成、晶体结构和理论研究结果。这项工作强调了寡对苯撑(oligoparaphenylene)衍生的纳米环(高度扭曲、合成具挑战性的共轭大环),不仅可以作为互锁超分子结构的构建块;而且还代表新的化合物种类——通过非共价相互作用稳定的,可分离的莫比乌斯构象。 本文使用ADF2017.104,在M06-2X泛函/DZP基组水平上,进行了共轭环间的相互作用能分解分析,由中科院大学丛欢课题组、厦门大学朱军课题组共同完成。 软件相关功能中文教程: 如何进行片段之间相互作用能、分子之间相互作用能、键能、键解离能、结合能计算、键能分解EDA、片段轨道布居 ETS-NOCV功能案例:二聚体能量分解(EDA)中轨道作用、电子在片段轨道间转移的分解 非键作用NCI: Non-Covalent Interactions

 
  • 基于 µCT 建模研究亚麻纤维的形态和力学性能概述 在当前可持续资源需求持续增长的背景下,植物纤维作为玻璃纤维等合成纤维的替代材料,近年来在市场上的能见度与占有率逐渐提升。在各类植物纤维中,亚麻纤维相较于玻璃纤维因其已通过生命周期评估证实的环境优势而备受关注。但在结构产品中的大规模应用仍受到多重因素的制约,植物纤维的自然特性在不同层面上引入了变异性,给更好地理解结构-力学性能关系带来了巨大挑战。 本研究基于 µCT 扫描图像数据创建亚麻纤维的微观结构模型,采用有限元方法模拟复杂纤维形态引起的局部应力和应变分布,探索形态特征对力学性能的影响。 图像处理和模拟 遵循标准 NF t 25-501 [...]
  • 水滑石/硼酸锌/改性环氧树脂复合阻燃涂层的制备及其阻燃性能研究背景 发泡聚苯乙烯泡沫具有保温、吸水、抗压减震、耐候性好等优点,被广泛应用于产品包装、建筑消防、化工生产、汽车工业和航空航天等众多领域。根据相关统计,普通 EPS 阻燃性能较差,暴露在明火中容易发生分解燃烧,且燃烧时伴随着大量的浓烟和刺鼻气体,对人体和环境构成巨大威胁。因此,提高 EPS 的阻燃和抑烟性能至关重要。 研究内容 本研究由沈阳理工大学和辽宁工程技术大学等单位合作,基于机器学习势方法,使用 AMS 软件中的 ML Potential 模块完成燃烧模拟工作。构建铝镁水滑石、硼酸锌、聚氨酯和环氧树脂阻燃涂层晶胞模型。通过模拟手段从微观层面对涂层体系进行燃烧反应研究,该方法不仅能够直接获取涂层结构体系的燃烧演化过程,还能够利用微观阻燃机理揭示宏观阻燃现象。 图1 涂层分子模型 在 15000 fs 内,三种涂层体系内的总分子数量随温度升高而快速增加;15000-27500 fs 内,分子数量发生小幅度上下波动,说明燃烧逐渐减弱,分子的消耗和生成逐渐趋于平衡;25750-30000 fs 内,分子数量随温度降低而逐渐减少。0-2500 fs 阶段,涂层体系内势能的增加表明发生吸热反应;2500-27500 fs 阶段,体系内势能缓慢降低;27500-3000 fs 阶段,体系势能随温度降低而快速减小。 图2 燃烧过程中体系分子数量和能量的变化规律 [...]
  • Co-TMDC 磁性隧道结:自旋电子学的新前沿研究背景 过渡金属二硫化物(TMDCs)因其优异的电子和光学性能,成为各种应用中非常有前景的材料。这些材料的单层、少数层和块体多层结构可以通过各种方式进行合成,对材料的掺杂、缺陷工程和异质结构制备等技术还可以实现性能的定制。磁隧道结(MTJ)由两个被绝缘薄层隔开的铁磁电极组成。当铁磁电极的磁矩的平行(反平行)配置时,MTJ 表现出最小(最大)电阻,电阻的变化幅度可以以隧穿磁电阻(TMR)表示。在二进制术语中,这些电阻最小(最大)状态对应于 0/1。这些磁性比特的状态可以通过自旋转移力矩(STT)、自旋轨道力矩(SOT)或外部磁场来操纵。MTJ是自旋电子学的基本器件单元,主要用于读取和写入器件的磁性状态。其低功耗、大面积可扩展性、几乎无限的耐久性和非易失性使其适用于各种应用,如模数转换器、微波发生器、振荡器、磁传感器、非易失触发器、神经形态计算机、全加法器、基于自旋的 NANDS、自旋逻辑和磁随机存取存储器(MRAM)。 研究内容 作者研究了 Co/XY2/Co(X∈(Mo,W),Y∈(S,Se,Te))构成的高自旋极化电流的磁隧道结(MTJ)。密度泛函理论(DFT)用于计算基态电子性质,非平衡格林函数方法则用于量子输运计算。 图1. Co/XY2/Co 的结构示意图 [...]
  • 锂电池电极建模:基于 CT vs DFN 模型概述 随着电池制造业持续发展以应对交通电动化需求,企业获得加速电池设计与优化进程并降低成本等商业优势的同时也承受着日益增长的压力。新型材料和应用频繁且往往出人意料地涌现使快速优化锂离子电池(LIB)设计对制造商来说极具挑战性,必须摆脱对试错法的依赖,转向包括采用数学建模的更高程度自动化。 LIB 建模的基准模型 Doyle-Fuller-Newman(DFN)框架基于物理的连续介质模型且融合了多孔电极理论,而基于 CT 扫描图像重建的三维模型能够捕捉颗粒的真实几何形状。本研究基于 CT 和 DFN [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •