QuantumATK:材料性质模拟工具套件

Posted · Add Comment

电子态性质 QuantumATK可以使用 DFT-LCAO、DFT-PlaneWave 和 SemiEmpirical 等工具进行实空间或者k空间的电子态结构分析。包括能带(与投影)、态密度(与投影)、电荷和电势分析、电极化、费米面、复数能带、有效能带等。 导电性(载流子性质) 导电性是导体、半导体等电子材料中最重要的基础性质,该工具可以仅从材料结构出发,不依赖经验参数,直接计算得到材料的载流子有效质量、迁移率,材料的电导率(电阻率)、霍尔系数、电子热导率、热电Seebeck系数、热电功率因子等重要的信息。 电子器件性质 QuantumATK中成熟的双电极器件模型和非平衡态格林函数方法是研究器件在偏压下的电子输运性质的有力工具。在双电极器件模型的基础上,QuantumATK还可以使用高级的静电势模型,在器件区域增加具有指定介电常数的绝缘区域和具有特定电压的金属区域,用于模拟FET器件。 材料表面性质 材料的表面态、表面化学等在拓扑绝缘体、催化等热门领域里都占据着决定性的位置。QuantumATK 基于 DFT 和格林函数方法方法开发了真正可以模拟半无限表面体系的模型,即将一个表面 Slab 模型耦合于半无限的块体结构上。这个模型在表面体系研究中比传统模型具有明显的优势。 材料界面性质 采用双电极界面模型模拟材料界面,比Slab模型更加便捷,可以避免Slab模型的上述问题。此外,双电极模型还可以更好的研究:异质结的电流-电压特性,例如漏电流、金属-半导体界面的肖特基势垒、磁性隧道结的自旋输运、缺陷(杂质和空位)对输运性质的影响、界面上的电荷转移。 构造金属半导体接触结构模型 优化金属半导体接触结构 研究接触性质,区分肖特基接触和欧姆接触 计算能带并区分金属和半导体部分的贡献 计算接触的能带排列(PLDOS)并直接作图 模拟接触区域的电势曲线,分析肖特基势垒 材料动力学 动力学模拟是一种重要的原子级模拟方法,通过求解原子运动的经典力学牛顿方程对相空间进行采样,不仅可以研究体系在相空间的演化过程,还可以通过产生的系列结构(系综)通过统计方法得到体系在非零温度下的各种性质。 动力学过程中的原子间相互作用力则可以通过多种方法求得,可以是密度泛函理论,也可以是经验力场。 磁性与自旋性质 QuantumATK包含了最新的模拟方法,即用密度泛函理论(DFT)来模拟自旋电子器件。在模拟中可以考虑含旋轨耦合的非共线自旋计算,MetaGGA泛函,非平衡态格林函数(NEGF)器件模拟,等等。QuantumATK在进行非共线自旋、自旋轨道耦合自洽计算方面在不断进步,越来越快速可靠。 材料点缺陷分析工具 研究块体材料中的空位、替位和间隙点缺陷 可以研究中性或带电的点缺陷 计算弛豫的缺陷结构、形成能和热力学转换能级 采用高效的材料动力学方法分析点缺陷的扩散过程,给出扩散活化能和速率的概貌 光生电流性质 构造异质结构,直接计算在不同的光子能量照射下的光电流谱 内置标准太阳光谱,可以直接计算在太阳光照射下的光生电流值 可以考虑光子的各种偏振方向 化学反应过渡态 采用NEB方法优化化学反应或扩散过程过渡态并用交互式动画显示 采用专有的初始路径创建工具,直接创建更接近真实反应路径的过渡态结构 采用HTST理论预测反应速率    

费米科技招聘启事

Posted · Add Comment

费米科技成立于2014年,以促进新材料创新为宗旨,致力于计算模拟技术在材料研发中的应用与推广,为中国的学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。 费米科技是年轻、富有朝气的团队,既有科研上的严谨,也有年轻人的活力。我们认可每一个人付出的努力并愿意帮助新手成长为独挡一面的人才。 如果你是: 擅长与人交流的理工科毕业生 希望个人的努力与收获成正比 喜欢有机会去不同的城市看风景 欢迎加入我们! 如何申请 有意者请将简历投递至fermi@fermitech.com.cn邮箱,并注明申请岗位。我们会对申请人的情况进行适当的考核,联系安排进行下一步的面试。 招聘岗位:销售业务经理 岗位职责 负责开发、追踪和维护新客户 协助维护商务流程和技术文档 参与完成公司的市场活动 工作地点 西安 你将获得 优秀的自我管理和团队协作能力 与高水平科研团队的交流机会 远离办公室政治 有竞争力的薪资待遇和福利 职位要求 物理/化学/材料专业的本科或硕士 学习能力强,交流沟通顺畅 踏实肯干,能够适应一定频率的短期差旅 有材料学计算模拟研究经验优先 招聘岗位:Amsterdam Modeling Suite(原名ADF)的兼职技术支持 要求 熟悉AMS安装,以及ADF或ReaxFF的使用。工作时间、地点自由,能保证每天回复邮件。 获益 在长期的技术支持过程中,在专业技术人员指导下,将达到对软件的精通。 转为长期正式技术支持的机会。 有意请与 fermi@fermitech.com.cn 联系。 招聘岗位:QuantumATK 全职或兼职技术支持 要求 熟悉QuantumATK的安装和使用,能对用户使用过程中的一般性问题给出解决建议。工作时间、地点自由,能保证每天回复邮件。 获益 在长期的技术支持过程中,在专业技术人员指导下,将达到对软件的精通。

电子器件性能仿真工具

Posted · Add Comment

概述 直接模拟器件无疑是半导体材料的模拟非常吸引人的方向。QuantumATK中成熟的双电极器件模型(Two-probe device model)和非平衡态格林函数方法(Non-Equilibrium Green’s Fucntion, NEGF)是研究器件在偏压下的电子输运性质的有力工具。 在双电极器件模型的基础上,QuantumATK还可以使用高级的静电势模型,在器件区域增加具有指定介电常数的绝缘区域和具有特定电压的金属区域,用于模拟FET器件。 电子器件性能模拟与仿真 采用QuantumATK中提供的智能化、自动化的工具可以很方便的研究异质结构、FET器件的IV特性、非弹性电流和光电流,分析透射机理。 IVCharacteristics 研究工具(电流-电压曲线) 扫描源漏偏压和栅压,计算源漏电流 自定义源漏偏压,作电流-栅压图,得到伏安特性(Ids-Vds)曲线、转移特性(Ids-Vgs)曲线 计算弹性、相干的隧穿输运 每个电压下同时自定义设置任意计算,如能带(PLDOS)、电子密度、电势分布等,一次获得所有结果 将多条电流曲线进行综合作图,从电流-电压特性分析器件性能 开关比(on/off ratio) 亚阈值斜率(subthreshold slope) 转移电导(transconductance) 漏极诱导势垒降低(DIBL) 源漏饱和电压 其他功能 计算状态随时保存,中断自动续算 多级别并行化 在图形界面上直接设置计算 电子透射机理分析 透射系数(k分辨、能量分辨) Monkhorst-Pack 或 edge-to-edge zone filling 方法 k 布点,或只采样部分布里渊区来获得详细信息 谱电流 透射谱、本征值、本征透射通道 器件态密度,可投影在原子或角动量上 电压降 分子投影哈密顿量(MPSH)本征值 电流密度和透射路径 共线和非共线自旋的自旋转移转矩(Spin Transfer Torque,STT) 使用 LDOS 或器件态密度得到原子尺度的能带图 电声耦合与非弹性电流   考虑电声耦合计算非弹性电流和温度效应(准非弹性(LOE)和全非弹性(XLOE)方法) 可以用任意方法(DFT、tight-binding、DFTB、经验势)组合处理电子和声子部分 众多提高性能选项,例如:将声子模式平均化(bunching)、使用能量相关的弛豫能量,均匀体系的密度矩阵自动重复,等等 非弹性隧道电流谱(IETS)分析 […]

QuantumATK:材料表面的建模和模拟

Posted · Add Comment

概述 材料的表面态、表面化学等在拓扑绝缘体、催化等热门领域里都占据着决定性的位置。与其他的周期性模型程序类似,QuantumATK 也可以用传统的 Slab 模型来描述表面体系,但Slab模型有很大的缺陷和局限: Slab 最大的不足是无法模拟实际表面下方通常是无限大的块体材料; 由于厚度有限,Slab 中的电子容易体现出量子限制的效应; 两个表面之间、表面与界面之间存在相互影响; 很难正确的在表面方向模拟外加电场; 经常需要表面钝化、偶极校正等额外补救措施。 单电极表面(One-probe surface)模型(或半无限表面模型) 为此,QuantumATK 基于 DFT 和格林函数方法方法开发了真正可以模拟半无限表面体系的模型,即将一个表面 Slab 模型耦合于半无限的块体结构上(见下图)。 详细介绍参见:QuantumATK独有的新功能:非平衡态格林函数方法研究半无限表面模型。 使用QuantumATK研究表面体系的优势 通用、高效的计算引擎 QuantumATK 计算基于第一性原理,因此可以用于研究全新材料的各种性质,例如: 传统金属-半导体界面 高k介电材料 金属、半导体纳米线 纳米管、金属纳米管接触 原子簇 等等 QuantumATK 中使用局域基组展开方法,尤其适用于研究局域化缺陷(杂质、空位等),ATK-DFT计算引擎可以计算千原子级别的体系的性质。ATK-SemiEmpirical 则可以计算更大的体系。 NanoLab高级图形用户界面:专注于研究,更快获得结果 NanoLab 图形用户界面丰富易用的功能可以让用户专注于研究项目的科学问题,专心思考科学问题,更快的发现新材料、创建新结构,避免在数据的导入、导出、处理、作图等琐碎的问题上浪费时间。NanoLab 可以: 方便快捷的材料表面建模工具 强大的材料界面结构建模工具 最合理的界面结构优化方法 快速构建各种结构模型 内嵌晶体结构数据库 搜索在线晶体结构数据 亮点文章 路易斯酸碱化学实现二维金属硫化物的表面功能化(Nature Nanotechnology, 2016)(原文链接:doi:10.1038/nnano.2015.323) 非平衡态格林函数方法研究半无限表面模型(https://arxiv.org/abs/1707.02141) 拓扑绝缘体的表面态 二维材料的边缘态   实例教程 表面结构与吸附 表面分子吸附体系建模:中文教程、英文教程 […]

材料载流子与导电性质计算模拟工具

Posted · Add Comment

概述 导电性是导体、半导体等电子材料中最重要的基础性质,该工具可以仅从材料结构出发,不依赖经验参数,直接计算得到材料的载流子有效质量、迁移率,材料的电导率(电阻率)、霍尔系数、电子热导率、热电Seebeck系数、热电功率因子等重要的信息。 载流子有效质量 通过计算能带的曲率得到载流子的有效质量 在计算能带的基础上分析任意k点处的有效质量张量,计算在高对称方向或任意k方向上的有效质量 可以考虑载流子有效质量的各向异性 使用多种泛函、自旋-轨道耦合等高级理论方法获得更精确的有效质量 通过研究能带的非抛物线形式,研究实际结构中载流子有效质量与尺寸受限效应等的关系 载流子迁移率 采用全声子谱电声耦合计算载流子的迁移率,不需要使用形变势等传统的近似理论。 计算电子态、声子态以及完全的电声耦合矩阵,得到载流子的迁移率、霍尔系数、塞贝克系数等输运性质,以及输运性质受温度的影响; 电子态和声子态都可以由 DFT、DFTB 或 ForceField 方法分别计算; 电导率(电阻率) 直接得到材料的电导率或电阻率 得到电导率(电阻率)与温度的关系 热电性质 直接计算热电Seebeck系数、电子热导率、功率因子等。 费米面 直接计算能带和费米面形状,了解载流子的基本特性 电声耦合系数与形变势 计算电声耦合系数 计算由声子引起形变势,用于TCAD等的模拟 推荐软件模块 QuantumATK(LCAO/PlaneWave/Forcefield) 模拟实例 载流子有效质量 载流子迁移率 非抛物线性能带与载流子有效质量  

材料与器件模拟研讨会在广州成功召开【报告详情与资料】

Posted · Add Comment

由费米科技、华南理工大学物理与光电学院与 Synopsys QuantumATK 共同主办的“材料与器件模拟研讨会暨 QuantumATK Workshop China 2019”于 5 月 24-26 日在广州华南理工大学成功举办。本次研讨会包含了 QuantumATK 新版发布、材料学计算模拟研讨和 QuantumATK 新功能上机演示三个部分。 QuantumATK新版发布 来自Synopsys QuantumATK 的 Anders Blom 博士为与会者介绍了 QuantumATK P-2019.03 新版特性,费米科技的董栋博士在Workshop上机操作环节为大家演示了这些激动人心的新功能。SCAN泛函和PAW势方法的引入标志着新一代的材料与器件模拟平台 QuantumATK 中的计算引擎已经日臻完善,其中的DFT模块是目前最为全面的固体 DFT 计算引擎,包含了 LDA、GGA、MetaGGA、SCAN、HSE 等众多常见泛函、原子轨道线性组合(LCAO)和平面波基组(PlaneWave)、模守恒(Norm-Conserving,NC)和Projector-Augmented Wave(PAW)赝势等。QuantumATK 还无缝集成了 DFTB 和 ForceField 等其他级别的方法,以满足不同模型和计算规模的需求。新发布的灵活易用的能带和态密度投影分析计算作图工具、全功能的能带分解电荷分析计算作图工具、自动化的磁各向异性能量(MAE)分析计算与作图工具、半导体材料带电点缺陷分析计算与作图工具、基于 DFT/DFTB/Forcefield 实现的 time-stamped force-bias Monte Carlo 方法等材料性质分析套件则为更广泛的材料学应用提供了有利的支持。 QuantumATK P-2019.03 新增功能请参考链接:【QuantumATK P-2019.03新版发布】。 QuantumATK 全部功能详细列表请参考链接:【QuantumATK功能列表】。 材料学计算模拟应用研讨 本次会议邀请了国内相关领域的资深专家就二维材料与器件、纳米与分子器件的电输运和热输运等主题作了深入浅出的专题讲座,同时邀请来自全国 16 家单位的 […]

【QuantumATK亮点文章】单层过渡金属二硫化物边缘时间反演对称性的自发破缺

Posted · Add Comment

利用密度泛函理论(DFT)和格林函数方法,文章报道了三种单层过渡金属二硫族物(TMDs)MoS2、MoTe2和WTe2 的 1T’ 相的不同边缘上存在具有非共线自旋形态的磁性边缘态。磁性态是零带隙的,伴随着时间反演对称性的自发破缺。这可能会对使用WTe2作为量子自旋霍尔绝缘体的前景产生影响。此前有报道通过应用垂直电场可以关闭1T’ TMDS的拓扑保护边缘状态【X.Qian,J.Liu,L.Fu,J.Li,Science 3461344(2014)】。本文通过完全自洽的DFT计算,证实了拓扑边态确实可以被关闭,但所研究的磁性边缘状态是强壮的,并在外加电场时保持零带隙。 模型 文章所使用的二维材料边缘模型是半无限周期的单边缘模型(只有一个边缘),因此克服了条带模型中宽度受限、两个边缘的缺点。x方向左侧的周期边界条件(PBC)、Dirichlet 边界条件(DBC)确保了周期体系和边缘部分的正确连接,x方向右侧的Neumann边界条件(NBC)则是真空静电势的最自然边界条件。z方向的DBC除了确保了模型更符合真实情况(无需周期性)之外,还允许在真空方向上增加栅极(Gate)来调控边缘态。 使用最新的QuantumATK P-2019.03 可以十分方便的计算这类Surface模型的能带结构,以研究三维周期体系的表面态或者二维周期体系的边缘态。 从下图可以看出,这种模型与纳米条带模型相比,周围电场的情况有明显的不同。 MoS2的能带和三种不同的边缘 三种不同边缘的能带 电场的影响 参考 Jelver, L., Stradi, D., Olsen, T., Stokbro, K. & Jacobsen, K. W. Spontaneous breaking of time-reversal symmetry at the edges of 1T’ monolayer transition metal dichalcogenides. Phys. Rev. B 99, 155420 (2019).(doi:10.1103/PhysRevB.99.155420;http://arxiv.org/abs/1812.09082) QuantumATK在材料表面与界面的计算中有独特的模型和方法:http://www.fermitech.com.cn/quantumatk/materials-interface/ DFT-NEGF材料表面计算模型、方法与应用:http://www.fermitech.com.cn/quantumatk/surface-negf-model/ QuantumATK P-2019.03新版发布:http://www.fermitech.com.cn/quantumatk/release-p-2019-03/ 立即试用 QuantumATK! […]

SCAN metaGGA 泛函简述

Posted · Add Comment

密度泛函理论的“天梯” 1964年,Hohenberg 和 Kohn用反证法告诉我们存在这样一个“天堂”,在那里有一个通用的电子密度泛函,能够在密度泛函理论(DFT)框架中给出任意体系的基态 【1】。这是一个美好的理想。Kohn 和 Sham 在随后给出了 Kohn-Sham 方程的同时,也开始了搭建通往“天堂”的“天梯”(Jacob’s Ladder)的第一步:局域密度近似(LDA)【2】。推广的梯度近似(GGA)尤其是 PBE 泛函【3】在固体计算领域取得的巨大成功似乎提示我们这是一条正确的途径。从那以后直到今天,研究者们一直在努力修建“天梯”。 密度泛函的一般表达式很容易写出: 只包含密度项为 LDA,包含密度梯度项为 GGA,包含动能项为 meta-GGA,这三类泛函均为半局域(semi-local)泛函,他们构成了“天梯”的前三级。半局域泛函的一个重要优势就是计算速度快,但由于各种半局域泛函往往只能满足部分的约束条件,因此往往只在某些体系里计算精度较好。将半局域泛函与非局域项组合构成杂化泛函(“天梯”第四级),虽然在多个方面的计算精度有很大改进,但是计算量却是百倍的增长。 SCAN Meta-GGA泛函 最新的 SCAN 泛函(Strongly Constrained and Appropriately Normed Semilocal Density Functional)【4】是 MetaGGA 泛函的一种,是基于约束构建非经验半局域泛函的一个重要成果,因为 SCAN 泛函是第一个满足全部已知的17个约束的半局域泛函。 对 SCAN 泛函的系统测试表明,此泛函在计算各种固体的各种性质(尤其是能量相关性质)中比 LDA 和 GGA 有很大的改进,几乎达到了杂化泛函的水平,但是比杂化泛函要大大节约时间,计算量保持在半局域泛函水平【5】【6】。 密度泛函理论天梯【7】。SCAN 泛函的出现将 metaGGA 泛函的精度提高到了杂化泛函的水平。 在 QuantumATK 中使用 SCAN 泛函 SCAN 泛函已经包含在 QuantumATK 的最新版本中,同时支持平面波基组计算引擎(DFT-PlaneWave)和原子轨道线性组合基组计算引擎(DFT-LCAO),可以用于块体材料的能量、结构优化、分子动力学、动力学矩阵、电声耦合、带电点缺陷分析、磁各向异性能量等各种计算。 DFT-PlaneWave 和 DFT-LCAO 计算引擎给出的结果一致: 提示:更多更新功能详见《QuantumATK P-2019.03新版发布》和 《QuantumATK功能列表》。 文献中对 SCAN 泛函的一些测试结果 SCAN 泛函在内聚能、形成能的计算中普遍优于其他的半局域泛函,例如在硅的间隙缺陷形成能计算中得到与实验一致的结果【5】。 SCAN 泛函在主族化合物结构稳定性预测中得到了近乎完美的结果,副族化合物结构稳定性预测也比 PBE 泛函要好【5】【8】。 SCAN 泛函还更好的体现了中程的范德华相互作用,在预测冰和水分子团结构【5】以及半导体材料【6】中得到很好的结果。 也有文章认为 SCAN 泛函在二维材料的结构和电子态研究中能得到更好的结果【9】。 参考文献 Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964). Kohn, W. & Sham, […]

QuantumATK P-2019.03新版发布

Posted · Add Comment

更新概要 密度泛函理论方法更新 材料性质分析模块新功能 动力学计算更新 计算性能提升 重新设计的计算脚本生成工具 全面提升的二维数据作图工具 其他更新  密度泛函理论方法更新 在平面波和LCAO基组的DFT计算中采用SCAN MetaGGA泛函,极大的提升了GGA和LDA在各种体系中的计算效果 Strongly Constrained and Appropriately Normed semi-local density functional 大幅改进能量计算(与LDA和GGA相比) 与完全非局域杂化泛函得到一样精度的结果,但是大大节省计算成本【[G.-X. Zhang et al., New J. Phys. 20, 063020 (2018)]】 可用于LCAO和PlaneWave计算 可以用于各种块材计算分析:优化结构、动力学模拟、动力学矩阵、哈密顿量导数、点缺陷分析、磁各向异性等等  平面波计算新增对多种材料性质分析工具的支持 光学谱,有效能带,投影能带(Fat Bandstructure),投影态密度、本征值 PlaneWave现在和LCAO支持的相同类型投影:自旋(上/下),自旋(x/y/z),原子位,原子组标签、元素、壳层、轨道等 使用Kerker预处理工具改进使用平面波DFT对片层(Slab)结构计算的收敛性 HSE杂化泛函与非共线/自旋轨道耦合联合使用 HSE杂化泛函计算速度提升 GGA PseudoDojo模守恒赝势现在支持非共线自旋轨道耦合;新增PseudoDojo LDA赝势 PAW方法:Projector-Augmented Wave method 可以使用比模守恒赝势更低的波函数截断(NC:30-40Ha;PAW:20Ha),大大提高计算速度 可以计算:总能、力、能带、态密度、声子能带和态密度、振动模式动力学矩阵、费米面、化学势、有效质量,等等 支持自旋极化计算 可选Generalized Davidson(默认)或PPCG方法解本征值 全面支持MPI并行 PAW数据:GPAW(默认)和JTH(包含镧系元素) 材料性质分析模块新功能 磁各向异性能量(MAE) 使用功能强大的study […]

【QuantumATK亮点文章】Janus 二维材料用于高效光电池器件(Nano Lett. 2018)

Posted · Add Comment

之前的文章(链接)介绍了在原子尺度上模拟光电池器件时考虑温度效应的方法[1],最近这种方法又被用于一种新的堆叠 Janus 光电池器件[2]。基于最新发现的二维材料MoSSe的超薄(0.5-1nm)器件可以产生的光电流和外量子效率(EQE)比 20-40 倍厚的硅基器件还要大。 这类 Janus 过渡金属二硫族化合物(TMD)是一种双侧不对称材料,跨平面的不对称性在二维材料平面的两侧产生了一个偶极,这个偶极可以多层堆叠。这样得到的“p–n结”可以用于分离在底层和顶层产生的电子(e-)和空穴(h+)载流子,载流子分别进入两侧的石墨烯电极中产生光电流。至关重要的是,石墨烯不会像金属电极一样屏蔽这种跨层的偶极。 使用 QuantumATK 的图形界面可以基于 TMD 创建堆叠Janus光电池器件。QuantumATK的第一原理DFT和DFT-NEGF 方法、光电流计算模块等可以用于计算能带、态密度、电子透射、输运通道、光电流密度等各种重要性质。文章报道的 Janus 光电池器件可以产生的光电流和外量子效率(EQE)比 20-40 倍厚的硅基器件还要大。此外作者还注意到,由于偶极的堆叠影响,器件在光子能量小于单层 Janus MoSSe 的带隙时也能产生光电流。作者建议也许可以使用 MoSSe Janus 层与硅薄膜结合来提高硅对低能量光子的吸收效果。作者还建议可以在光电应用领域里研究其他 Janus 二维材料(例如 CrSSe、ZrSSe 等)。 相关教程和讲座 文章中所用方法都在QuantumATK O-2018.06之后的版本实现,详见: Webinar on accurate atomistic simulations of solar-cell devices including temperature effects Tutorial on the photocurrent in a silicon p-n junction Tutorial on electron transport […]

 
  • Simpleware X-2025.06 新版发布:创建用户的 CAD 器械库和持续推进自动化Simpleware 三维图像处理和模型生成的专业平台于近日发布了 X-2025.06 新版本,将继续推动用户生成自动化和设计效率的边界。新增功能和改进包含扩展与第三方 AI 工具的兼容性(支持 nnU-Net 模型和完整的 MONAI bundle)、导入用户自定义 CAD [...]
  • 基于 ReaxFF MD 和 DFT 的 CaO 催化木质素气化制氢的机理研究研究背景 全球能源转型亟需绿色制氢技术。生物质气化制氢虽具潜力,但水煤气变换反应(WGSR)受高浓度 CO₂ 逆向抑制,限制产氢效率。研究表明,添加 CaO 可通过原位吸附 CO₂ 显著提升 H₂ 产率(实验显示最高可倍增),同时催化焦油重整提升转化率 23–41%。然而,CaO 在复杂气化体系中的”吸附-催化”协同机制尚未明晰。通过联合 ReaxFF MD 与 DFT 模拟,探究 CaO 催化木质素气化制氢的反应机理,为设计高性能钙基催化剂提供理论依据。 研究内容 宁夏大学含碳基质气化课题组,采用 ReaxFF MD 与 DFT 结合的方法,揭示了 CaO 催化木质素气化制氢的多尺度协同机制。研究表明高温下 CaO 解离释放的高活性 Ca2+ 易与气化剂(H2O)或含氧有机物的氧部位结合,促进O-H、C-H、C-O [...]
  • 从核磁共振特征看Pt单原子催化剂的配位环境摘要 将原子分散物种与受控结构结合在一起的负载型金属催化剂,是催化材料设计的前沿领域,对反应性和金属高利用率提供了卓越的控制能力,接近分子级的精度。然而准确解析局部金属配位环境仍然面临挑战,它仍然阻碍着结构-活性关系认知的发展,而结构-活性关系是在不同应用领域中,优化设计所必需的信息。虽然电子显微镜能够揭示原子分散情况,但在多相催化中使用的传统光谱方法只能提供平均化的结构信息。里昂第一大学、苏黎世联邦理工学院、丹麦奥胡斯大学的研究者们,在最近发表于 Nature 的文章中,证明 195Pt 固态核磁共振(NMR)光谱是表征各种载体上原子分散 Pt 位点(即所谓的单原子催化剂 SAC)的有力工具。使用蒙特卡罗模拟,将 NMR [...]
  • 反铁磁隧道结中磁电阻的起源和增强:自旋通道选择规则研究背景 反铁磁材料(AFM)因具有超快自旋翻转速度(太赫兹级)、无净磁矩、高抗干扰性和优异的稳定性,被视为下一代磁阻随机存储器(MRAM)的核心候选材料。然而,反铁磁隧道结(AFMTJs)中的隧道磁阻(TMR)通常较低,其根本原因在于两个自旋通道的对称性导致隧穿电流极化不足,限制了 AFMTJs 的广泛应用。本研究通过创新理论模型:自旋通道选择规则,提出通过结构工程调控界面倾斜角(Interface Tilt Angle ITA)来控制不同自旋通道的隧穿距离,打破对称性;并通过调制倾斜界面使得自旋向上(↑)和向下(↓)电子的隧穿势垒差异,形成高度极化的电流,从而显著提升隧道磁阻。利用 FeTe 作为代表材料,发现隧穿界面的倾斜会使得 AFMTJs 产生明显的自旋极化,并诱导出较大的 TMR。证明 Néel 型 AFMTJs 的隧穿磁阻(TMR)会随着隧穿界面的倾斜角增大而增大。该工作揭示了二维 Néel 型 AFMTJs 中界面与 TMR 的关系,并为实现反铁磁体信息的有效写入和阅读开辟了一条新的途径。 研究内容 研究采用密度泛函理论结合非平衡格林函数方法,预测在共线完全补偿的反铁磁体中会出现极化电流。从自旋电子的散射模型和势垒贯穿模型出发,构建了如图 1 所示的 AFMTJs 模型。 图1. 插图展示了电子在不同界面配置下的隧穿过程。(a)-(c) 是 AFMTJ 隧穿界面中自旋电子在 P 态下的隧穿示意图,分别以矩形、梯形和平行四边形表示;(d)-(f) [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •