锌离子导电 MOF 界面层助力高稳定性水系锌电池

Posted · Add Comment

研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo Yoo 教授课题组提出了一种新策略:利用导锌金属有机框架(ZIF-7/SA )构筑功能化界面层,以同时解决枝晶和副反应问题。 图 1. ZIF-7/SA 薄膜的各类表征以及机制示意图 研究内容 本研究的核心在于设计并合成以 SA 作为黏结剂,与 ZIF-7 复合一种在锌负极上构建保护涂层,并将其作为人工界面层修饰在锌金属表面,以实现对锌沉积/剥离过程的调控。研究主要包括以下几个方面: 1,ZIF-7/SA界面层的构筑与表征 研究团队将 ZIF-7 与海藻酸钠(SA)复合涂覆在锌片表面,形成厚度约 10 μm 的致密界面层 ZIF-7/SA 薄膜。SEM 显示表面平整,FTIR 证明 SA 羧基与 Zn²⁺ 发生配位,结构稳定。 图 2. ZIF-7/SA的 SEM、FTIR方法表征结果 2,电化学性能测试 在对称电池中,裸 Zn 仅稳定 35 小时,而 ZIF-7/SA 可循环超 1800 小时,在 20 mA cm⁻² […]

基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究

Posted · Add Comment

研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; 发光层及电荷传输层所采 用的分子混合材料; 激子过程中复杂的物理机制,涵盖激子的生成、传输及相互作用; 覆盖从纳秒级光物理过程到亚毫秒级载流子传输以及低迁移率层状材料中弛豫过程的广泛时间尺度 虽然宏观连续体漂移-扩散模型可以在器件尺度上描述电流密度, 但在应对主客体分子的分子级混合及其对激子过程速率的影响时仍存在局限。而基于密度泛函理论的微观原子级模型能够揭示单个分子或晶体系统的电学与光学特性,但将此模型应用于完整 OLED 堆叠结构的仿真仍充满挑战。 研究内容 华南师范大学华南先进光电子研究院彩色动态电子纸研究所刘飞龙课题组围绕 2019 年华南理工大学在Nature Communications 报道的一种高性能 TADF 型白光 OLED 器件展开研究。该文章中提出了一种高效发光的荧光 WOLED 器件,并且做了三种不同的器件来证明器件的高效性。该器件在合理的结构设计下实现了约 20.5%的外量子效率和优异的器件寿命,展现出良好的应用前景。然而,该文章并未对其中的橙色 TADF 发光材料 FDQPXZ 是如何敏化蓝色 TADF 材料 DMAC-DPS 这一关键过程进行深入探讨。理解这一能量转移过程的底层物理机制,对于未来设计更高效率的 WOLED 器件至关重要。 本研究通过 Bumblebee 软件进行三维动力学蒙特卡洛模拟,仅使用一组材料参数就成功复现了多种实验表征良好的 TADF WOLED 堆叠结构的性质,包括:电流密度-电压特性、外量子效率滚降特性及瞬态光致发光特性。针对具有混合发光层和多种器件设计的复杂多层 OLED 堆叠结构同步优化提取了电子和激子器件参数。该研究定量揭示了电子能级结构、激子能量与电荷传输及激子过程速率之间的复杂相互作用机制,系统阐释了所研究器件的高效机理。基于这些物理认知进一步提出了具有更高效率的创新器件设计方案。 图 1 器件 1 优化前后能级示意和空穴分布图 2019 […]

弯曲 CrSBr 单层中的自驱动纯自旋光电流

Posted · Add Comment

研究背景 在近年来二维材料研究的迅猛发展中,二维磁性半导体因其在自旋电子学和光电子学领域的潜在应用而受到广泛关注。CrSBr 作为一种新兴的二维铁磁材料,兼具层状结构、稳定的磁序和各向异性的电子性质,为实现多功能集成器件提供了理想平台。特别是在无外加电压条件下实现的自驱动光电流效应,能够显著降低器件功耗,是发展新一代低功耗光电器件的重要方向。同时,纯自旋光电流的产生可避免能量损耗与散射限制,有望在自旋输运、信息存储与量子计算等前沿领域发挥关键作用。 然而,在传统二维材料中实现纯自旋光电流面临诸多挑战,如缺乏稳定磁序、对称性抑制光生自旋分离等问题。研究发现,通过施加应变或引入弯曲形变,可以有效打破材料的空间反演对称性,从而诱导内部电场并激发新型光电效应。因此,探索在二维磁性材料中通过弯曲构型实现自驱动且自旋极化的光电响应,具有重要的理论价值与应用前景。该工作正是在这一背景下开展,旨在揭示弯曲 CrSBr 单层中自驱动纯自旋光电流的物理机制,并推动二维材料在低维自旋光电子器件中的应用探索。 研究内容 本研究基于第一性原理计算与非平衡格林函数方法,系统探索了在机械弯曲条件下,CrSBr 单层中产生自驱动纯自旋光电流的物理机制。研究发现,非弯曲 CrSBr 单层的实空间电荷密度分布图中,S 原子和 Br 原子都参与了 VBM,CBM 由 Cr 原子组成。然而,弯曲后单层 CrSBr 的电荷密度分布却发生了令人兴奋的变化。屈曲后,VBM 占据结构左侧,CBM 占据另一侧。随着弯曲深度的增加,电子-空穴分离更加明显。 图1. 单层 CrSBr 的(a)俯视图与侧视图(b)能带结构及轨道投影态密度(c)CBM 与 VBM 的实空间分布(d)挠曲深度 d=11 Å 时的 CBM 与 VBM 实空间分布(e)d=11 Å 上下表面应力分布示意图 弯曲 CrSBr 左右两端的 α 自旋(β 自旋)能带边位置呈交错的 II 型能带排列,即弯曲导致结构左右两端的导带和价带发生漂移。这意味着弯曲结构具有更多的光生载流子,激子寿命得以延长。这一特性对于光电子器件至关重要。 图2. 挠曲深度 d=11 Å 时单层 CrSBr 中 α 和 β 自旋沿 z 轴方向的投影能带结构 内部和外部应变梯度导致器件结构的不对称增强,价带和导带附近的子带增多,以及结合态密度增加,从而获得光伏效应。 图3. (a)基于单层 CrSBr 的偏振器件示意图(b)无外加电压时 CrSBr 挠曲器件的光电流密度(c)挠曲光伏效应引发自供电行为的机理图(d)α 和 β 自旋在布里渊区高对称点处最高价带与最低导带之间的跃迁矩阵元(e-f)d=11 Å 时挠曲结构的 α 和 β 自旋的能带结构及态密度 基于柔性光伏效应,挠曲 CrSBr 消光比大大高于其他材料,且 CrSBr 弯曲光电器件在低光子能量范围内具有良好的单自旋滤波效果。 图4. (a)α 与 β 自旋的消光比(b)偏振角 0° 与 90° 时光电流密度的自旋极化率 总结 本研究基于第一性原理计算与非平衡格林函数方法,系统探索了在机械弯曲条件下,CrSBr 单层中产生自驱动纯自旋光电流的物理机制。研究发现,弯曲形变打破了材料的空间反演对称性,在体系内部诱导出有效电场,驱动光生载流子分离,从而实现无需外加偏压的光电流响应。进一步分析表明,该光电流具有明显的自旋极化特征,表现为纯自旋光电流的产生。此外,研究还揭示了该效应依赖于入射光的极化方向,展示出高度的偏振选择性。该工作不仅提出了一种结合机械调控与光自旋效应的新机制,也为设计低功耗、高灵敏度的二维自旋光电子器件提供了理论依据。 参考文献 Chen H, Chen L, Chen L, et al. Self-Powered Pure Spin Photocurrent in Bent CrSBr Monolayer[J]. Physical Review Letters, 2025, 134(24): 247001. https://doi.org/10.1103/s8qn-n8tr

炔烃插入-双金(I)络合物引发金催化机制新思考

Posted · Add Comment

背景 过去二十年,金(I)络合物因其优异的 π 活化能力,在均相催化领域大放异彩。特别是在炔烃的活化转化方面,阳离子型金(I)络合物已被广泛应用。然而,中性、配位饱和的金(I)络合物通常被认为催化能力弱、难以实现插入反应等过渡金属常规反应步骤。尽管已有零星研究报道了金(I)–X 键(X 为氢或杂原子)与炔烃发生插入反应,但几乎全部集中在单金属体系,且普遍需要高温或过量底物。近日,西班牙塞维利亚大学 Pablo Ríos 教授团队联合马德里康普顿斯大学 Israel Fernandez 教授在 Chemical Science 期刊上发表最新研究,首次系统性地揭示了双金(I)炔基络合物在插入反应中的独特反应路径,并通过实验和理论结合,阐明了第二个金原子如何降低能垒、改变反应方式。这项研究不仅刷新了人们对金(I)络合物反应性的认知,也为构建多金属协同催化体系提供了新思路。 图1. 由 DMAD 插入得到的Au( I ) 复合物的例子 研究内容 研究者合成了一类以 NHC(IPr 与 SIPr)为配体的双金(I)炔基络合物(化合物 7 与 8),并通过 X 射线单晶衍射确认其结构,合成方法如图2所示。这些对称型络合物在室温下即可与电子缺陷炔烃 DMAD 反应,生成 Z-构型烯炔产物。而对比实验发现,单金属络合物(如IPrAu–C≡CSiMe₃)在相同底物下需要 110°C 以上高温才可实现插入。不仅如此,研究团队对反应动力学进行了系统分析:双金体系在 25°C 下即可完成反应,表观活化自由能 ΔG‡ 仅为 22.6 kcal/mol;SIPr 取代后的 8 号络合物因电子密度提高,反而反应稍慢,这表明金–配体反作用也起关键作用;单金体系反应活化能高达 30 kcal/mol,难以在常温下进行。 图2.双金属乙炔化物 7和8的合成 理论计算则揭示了一个前所未有的“分步插入机制”,而非文献中常见的协同插入路径:DMAD 的 LUMO 为 C≡C […]

锂离子电池复合阴极中微孔碳粘合剂域相的数值设计

Posted · Add Comment

概述 锂离子电池(LIB)因低成本、高比能量密度和使用寿命长而广泛应用于电动汽车、电网规模存储等。尽管如此,仍需进一步降低成本和延长寿命,同时提高功率密度。LIB 电极复杂的微观结构可以显著影响电池的性能,阴极包含(i)存储锂离子的活性材料(AM)颗粒相;(ii)促进电子传导和确保机械刚性的碳粘合剂域(CBD);(iii)由含锂离子电解质填充的连通、曲折孔隙(30 ~ 40vol %)。 CBD 通常位于 AM 颗粒的接触处,是由导电添加剂(如炭黑)和非导电聚合物粘合剂(如 PVDF)组成的复合材料,在整体电化学性能和容量衰减中发挥着关键作用。本项目提出了一种新的 CBD 相算法,通过数值模拟研究 CBD 网络变化对电池性能的影响。 实验和模拟 按照 NMC 622、C65 炭黑、PVDF 重量比为 96:2:2 制备用于 SEM 分析的电极,采用等离子发射聚焦氙离子束双束系统设备获取电极横截面和成像,由 Everhart-Thornley 探测器拍摄铸态和压延电极的二次电子图像。微米级大孔和亚微米级微孔 CBD 相分布在 AM 颗粒之间的孔隙空间中,形成导电网络。压延使结构致密化,导致大孔尺寸减小。 图:铸态和压延 NMC 622 阴极结构的 SEM 图像,蓝色为 CBD 相 使用 Altair EDEM 软件中的颗粒堆积算法生成具有不同 AM 颗粒体积分数 φPar 的压延电极结构,通过 MATLAB 编程采用阈值化随机场算法生成大孔相和微孔 CBD 相。在 Simpleware 软件中对生成的微观结构进行网格划分,包含约 350 万个线性四面体单元和 180 […]

探索 ScXI(X =S, Se, Te)单层材料在微电子纳米器件和光电传感器中的应用

Posted · Add Comment

研究背景 随着二维材料研究的不断深入,寻找具有优异电子、光电性能的新型二维半导体材料,成为推动微电子器件和光电探测器技术发展的关键。ScXI(X = S, Se, Te)单层材料因其独特的层状结构、合适的带隙、优异的载流子迁移率以及良好的稳定性,近年来受到研究者的广泛关注。作为一类 III-VI 族化合物,ScXI 单层不仅具备与传统过渡金属二硫化物(如MoS₂、WS₂)相似的二维特性,同时展现出更大的结构多样性和可调性。 目前的研究表明,ScXI 单层材料在电子器件中有望实现高开关比的场效应晶体管,并因其对可见光和近红外光的良好响应能力,在光电探测与传感应用中表现出巨大潜力。此外,其各向异性电学特性与可调带隙也为设计新型纳电子器件与集成系统提供了理论依据和材料基础。因此,深入研究 ScXI 单层的电子结构、光学响应及其在微电子与光电传感器中的应用潜力,对于拓展二维材料体系的实际应用边界具有重要的科学意义与工程价值。 研究内容 宽带隙二维半导体在蓝光至紫外波段的大功率电子学和光电子学中有着广泛的应用。在这项研究中,利用第一性原理方法研究了ScXI (X =S, Se, Te)单层的电子、机械、输运和光电性质。一些基于 ScXI 单层的概念性纳米器件被构建,如 p-n 结二极管、场效应晶体管(FET)和光电晶体管。它们的多功能特性随后被揭示出来。 结果表明,ScXI 单层材料均为半导体,其直接带隙为 2.42 ~ 1.34 eV,具有较高的动力学、热稳定性和机械稳定性,显著的力学各向异性,相对较低的刚度,以及可通过施加应变调节的电子性能。 图1. ScXI 的(a)单层原子结构的主视图侧视图(b)声子谱(c)分子动力学模拟(d)杨氏模量(e)剪切模量(f)泊松比;投影能带与投影态密度(g)ScSI(h)ScSeI(i)ScTeI ScXI 单层的 x 型和 Y 型 p-n 结二极管均表现出很强的整流效果,具有超高的整流比、大的电流密度和显著的电各向异性,具有较大的电流各向异性比。 图2. 掺杂浓度为 3×1013 cm-2 的 x 型和 y 型 ScXI 单层 p-n 结二极管的输运性质(a)p-n 结二极管原理图(b-d)ScXI 的 p-n 结二极管偏压电流(e)ScXI 沿 x 方向单轴施加 6% 压缩应变器件的整流比 ScXI 单层场效应晶体管具有与 p-n 结二极管相同的完美整流效果和强电流各向异性。此外,栅极电压可以有效地调节 FET 的电流。 图3. 掺杂浓度为 3×1013 cm-2 的 p-i-n 型 ScXI 单层场效应晶体管的输运性质(a)p-i-n 结场效应管原理图(b-e)0、5、10 和 -10 V 栅极电压下,ScSI 单极层 p-i-n 结场效应管的电流、整流比 R(f)不同栅极电压下 ScSI 单层 p-i-n 结场效应管在 -1 V 偏压下的电流分布 ScXI 单层及其光电晶体管在可见光和紫外区也表现出良好的光电响应。 图4. ScSI 单层的(a)光吸收系数(b)光电导率实部(c)p-i-n 结光电晶体管示意图(d)p-i-n 结光电晶体管在零偏压(无电源)和零栅压下的本征光电流密度 总结 本文系统地研究了 ScXI(X = S, Se, Te)单层材料的电子结构、光学性质及其在微电子器件和光电传感器中的应用潜力。通过基于第一性原理的计算,作者发现 ScXI 单层为间接带隙半导体,带隙范围适中(1.6–2.3 eV),并具有良好的载流子迁移率与稳定性,适合用作下一代纳米电子器件的有源层材料。此外,这些材料在紫外到可见光范围内表现出显著的光吸收能力和各向异性光学响应,展现出优异的光电转换特性。研究还表明,三种材料的电子与光学性能随着 X 元素的更替呈系统性变化,可通过化学组分调控其性能以满足不同应用需求。该工作为 ScXI 类二维材料在场效应晶体管、光电探测器等领域的应用提供了理论支撑,也拓展了 III-VI 族二维材料在纳米科技中的实际应用范围。 参考文献 Chen J, Fan X, Li J, et al. Exploring the applications of Sc XI (X= S, Se, Te) monolayers for […]

无序有机半导体中可变范围逾渗传输机制的研究

Posted · Add Comment

研究背景 新型显示技术已成为新一代信息技术的先导性支柱产业,有机发光二极管已成为显示行业的一项关键技术。它们由无序的有机半导体构成,电荷通过这些材料传输并通常通过电荷载流子迁移率 μ 表征。在无序有机半导体中,电荷传输由载流子通过一系列分子的跳跃决定,这些分子位于一个能量无序的环境中,可以视为三维网络中的逾渗问题。对于设计和优化器件结构来说,理解其内部的物理传输机制至关重要,逾渗在无序有机半导体中的电荷传输中起着关键作用。然而,可变范围跳跃(VRH)对逾渗的影响尚未得到充分研究。 研究内容 本研究由华南师范大学和中科院微电子所单位合作,结合三维动力学蒙特卡洛(3D-KMC)模拟和“fat percolation”理论建模系统研究了可变范围跳跃(VRH)对无序有机半导体中电荷逾渗传输的影响,定量展示了 VRH 在纯和稀释无序有机半导体中的电荷传输机制。 图1 在无序有机半导体中逾渗电荷传输在渗透阈值时的情况 2011 年 Cottaar 等人基于“fat percolatio”提出无序分子半导体中电荷输运的标度理论,可以很好地描述最近邻跳跃模式(NNH)下具有非相关高斯能量无序的分子半导体中的载流子迁移率,其研究主要关注基于 NNH 的逾渗,而未涉及基于 VRH 的逾渗。同时在稀释材料中,还需要明确能量主导的逾渗与空间位点主导的逾渗之间的竞争关系,这一点在本研究中得到了理论上的确认和详细讨论。 图2 在高斯能量无序条件下纯材料的逾渗传输情况 首先对纯材料中的电荷逾渗传输进行研究,波函数衰减长度(λ)在 0.1 至 0.5 纳米之间变化,这对应于实际存在的无序有机材料。归一化的迁移率随能量无序度和温度的变化而变化,曲线与符号的一致性表明“fat percolation”理论在描述无序有机半导体中电荷传输的物理特性方面是成功的,无论是 NNH 还是 VRH。 随着波函数衰减长度的增加,越来越多的 VRH 路径对电荷载流子开放,从而提高电荷载流子的迁移率,VRH 的影响也变得越来越显著,此外可以发现 VRH 的影响还与温度有关。在高温极限下,电荷载流子具有较大的能量,可以克服能量无序,因此距离依赖性是决定跳跃率的主要因素。在这种情况下,载流子倾向于进行邻近核间跳跃,以最小化跳跃距离。在低温极限下,能量无序成为主导因素,电荷载流子可能无法跨越附近的高能垒,这促使它们进行进一步的跳跃,跨越较低的能量垒。这与 Mott 关于 NNH 和 VRH 的一般固体物理学理论相一致。 图3 在高斯和指数能量无序条件下不同活性材料比例的逾渗传输情况 当分子材料被稀释,即与另一种材料混合时,逾渗的概念变得更加复杂。这种技术在有机光伏电池设计(体异质结)中广泛应用,并且最近材料稀释被提出用于减少导电聚合物中的载流子捕获,提高电荷传输效率。基于对纯材料的理解进一步探讨了当材料被稀释时,电荷逾渗传输的物理特性,特别是能量无序引起的逾渗与分子位点空间减少引起的逾渗之间的相互作用。研究 3 种不同体系下的能量态密度(DOS)分布:高斯 DOS、指数 DOS和“高斯+指数”DOS。仿真结果显示“fat percolation”理论在描述纯和稀释无序有机半导体中的电荷传输物理方面是成功的。 当材料被稀释时,载流子的选择路径减少,被迫通过更高能量和更长距离的路径,因此关键临界能量(Ecrit)和关键临界距离(Rcrit)随着稀释程度的增加而上升。在稀释后的晶格拓扑结构中,逾渗成为电荷传输的主要途径。这与纯材料的情况不同,纯材料中逾渗主要由能量无序而非温度决定。与高斯态密度不同,指数态密度下的逾渗情况几乎不受温度影响。在指数 DOS 中,只有 1% 的陷阱位点在能量上有所不同,99% 的传输位点是无序的。因此,在高斯 DOS 情况下发生的长距离低能跳跃事件在纯指数态密度情况下消失了。在“高斯+指数”DOS 分布中,即活性材料由 1% 的指数陷阱态和 99% 的传输态构成,此时指数陷阱的存在进一步增强了长距离和低能量的跳跃,使得在低温下 VRH 现象更加显著。 总结 VRH 对稀释系统中的电荷传输至关重要,尤其是在低温和活性材料比例较低的情况下,同时为纯材料开发的“fat percolation”理论模型同样能够成功描述稀释材料中的迁移率。随着材料的稀释程度增加,能量主导的逾渗逐渐转变为空间位点主导的逾渗。这项理论研究对于理解实验测量的载流子迁移率的物理特性具有重要意义,特别是在使用材料稀释技术消除指数分布的陷阱态时,同时为高效稀释传输层和体异质结的物理机制提供了更深入的理解。 参考文献 Zhouyan Jiang,Feiling Yang, Yubai Li, Haorong Zhu, Jiawei Wang, Guofu […]

基于 ReaxFF MD 和 DFT 的 CaO 催化木质素气化制氢的机理研究

Posted · Add Comment

研究背景 全球能源转型亟需绿色制氢技术。生物质气化制氢虽具潜力,但水煤气变换反应(WGSR)受高浓度 CO₂ 逆向抑制,限制产氢效率。研究表明,添加 CaO 可通过原位吸附 CO₂ 显著提升 H₂ 产率(实验显示最高可倍增),同时催化焦油重整提升转化率 23–41%。然而,CaO 在复杂气化体系中的”吸附-催化”协同机制尚未明晰。通过联合 ReaxFF MD 与 DFT 模拟,探究 CaO 催化木质素气化制氢的反应机理,为设计高性能钙基催化剂提供理论依据。 研究内容 宁夏大学含碳基质气化课题组,采用 ReaxFF MD 与 DFT 结合的方法,揭示了 CaO 催化木质素气化制氢的多尺度协同机制。研究表明高温下 CaO 解离释放的高活性 Ca2+ 易与气化剂(H2O)或含氧有机物的氧部位结合,促进O-H、C-H、C-O 键断裂。此外,也探究了温度、水碳比(S/B)等因素对催化效果的影响。该研究结果有望为设计高性能钙基催化剂提供理论支撑。 图1. CaO 催化木质素气化反应路径模拟快照 CaO 在生物质气化过程中表现出明显的催化活性,其主要机理是通过降低反应势垒和加速化学键断裂显著提升气化效率。然而,在温度升高时,尽管 CaO 仍能保持一定程度的催化增强作用,但其功效会相应减弱。这种衰减可能与高温条件下催化活性位点的部分失活有关。因此,氧化钙催化剂的工作温度范围必须考虑催化性能和热稳定性之间的协同平衡,以便在工业气化情况下实现最佳催化效率。 图2. 不同温度下气化反应势能的演变过程 通过对不同体系气化产物的统计,发现 CaO 的催化效能呈现非线性温度响应,其通过降低特定反应能垒改变产物分布,但高温吸附饱和与热失活制约效率,需优化温度窗口以平衡反应路径与催化活性。 图3. 不同温度下的气化产物分子数(a)H2(b)CO(c)CH4(d)CO2 通过固定温度 3000 K,探讨了水蒸气与 CaO 在木质素气化中的协同作用,统计不同 S/B 比下 H2、CO、CO2 和 CH4 的分子个数。结果表明,H2 产量随 S/B 比增加而上升,但增速减缓;CO 产量在无 CaO 时增加,有 CaO 时略有上升;CO₂ 在有 CaO 时显著增加,CH₄ 变化不大。作者认为提高 S/B 促进水煤气反应,但高温高 S/B 下 CaO 吸附易饱和。 图4. 不同 S/B 条件下气化产物的分子个数(a)H2(b)CO(c)CH4(d)CO2 采用 AMS 软件的 ReaaxFF 及其 ChemTraYzer 2.0 基元反应分析功能,统计气化时发生的反应及其次数。明确了 CaO 通过调控电子结构(静电极化/能隙窄化)实现生物质高效气化,但高温导致的团聚与逆反应制约催化效率,需通过活性位点工程平衡稳定性与活性。 图5. 生物质气化过程中 CaO 催化反应机理 总结 本文利用 AMS 软件,探究了 CaO 催化生物质气化制氢的多尺度协同机制。研究发现,温度对催化活性呈非线性关系,高温促进气化剂解离,但导致 CaO 团聚失活,为优化操作窗口提供理论依据。另外,提高 […]

反铁磁隧道结中磁电阻的起源和增强:自旋通道选择规则

Posted · Add Comment

研究背景 反铁磁材料(AFM)因具有超快自旋翻转速度(太赫兹级)、无净磁矩、高抗干扰性和优异的稳定性,被视为下一代磁阻随机存储器(MRAM)的核心候选材料。然而,反铁磁隧道结(AFMTJs)中的隧道磁阻(TMR)通常较低,其根本原因在于两个自旋通道的对称性导致隧穿电流极化不足,限制了 AFMTJs 的广泛应用。本研究通过创新理论模型:自旋通道选择规则,提出通过结构工程调控界面倾斜角(Interface Tilt Angle, ITA)来控制不同自旋通道的隧穿距离,打破对称性;并通过调制倾斜界面使得自旋向上(↑)和向下(↓)电子的隧穿势垒差异,形成高度极化的电流,从而显著提升隧道磁阻。利用 FeTe 作为代表材料,发现隧穿界面的倾斜会使得 AFMTJs 产生明显的自旋极化,并诱导出较大的 TMR。证明 Néel 型 AFMTJs 的隧穿磁阻(TMR)会随着隧穿界面的倾斜角增大而增大。该工作揭示了二维 Néel 型 AFMTJs 中界面与 TMR 的关系,并为实现反铁磁体信息的有效写入和阅读开辟了一条新的途径。 研究内容 研究采用密度泛函理论结合非平衡格林函数方法,预测在共线完全补偿的反铁磁体中会出现极化电流。从自旋电子的散射模型和势垒贯穿模型出发,构建了如图 1 所示的 AFMTJs 模型。 图1. 插图展示了电子在不同界面配置下的隧穿过程。(a)-(c) 是 AFMTJ 隧穿界面中自旋电子在 P 态下的隧穿示意图,分别以矩形、梯形和平行四边形表示;(d)-(f) 是 AFMTJ 隧穿界面中自旋电子在 AP 态下的隧穿示意图,同样以矩形、梯形和平行四边形表示。 为了进一步探索界面构型差异对电子透射现象的成因,设计了平行四边形和梯形两种界面,并调整其界面倾斜。以 tanα  为自变量,输运性质为应变量,从中寻找依赖关系。隧穿界面从梯形逐渐转换到平行四边形的过程中,α 逐渐从负值转变为正数,tanα 单调递增,tanα 的绝对值先减后增。tanα 的变化趋势与 TP/TAP 的变化趋势相反,而 TMR 的变化趋势则是与 tanα 趋势相同。 图2. 两种隧道界面的逐渐转变,伴随传输性质的变化。(a) 倾角 α 的定义:当其为梯形时,α < 0;当其为平行四边形时,α > 0。此外,在从梯形到平行四边形的转变过程中,α 逐渐增加。(b) SFE 随 α 的变化。这里,SFE 的相对大小代表极化的强度。(c) P 态和 AP 态总透射强度相对于 α 的相对大小。(d) TMR 随 α 的变化。(e) 计算结果与其它磁隧道结在 TMR 方面的结果对比。 最后,示意性地展示该模型在实验中的可能实用性。二维 FeTe 可以通过气相沉积技术合成。随后,使用刻蚀技术制造所需的隧道界面配置。最终,不同形状的 FeTe 被转移到基底上,以制备 AFMTJs。所有提出的这些技术已在其实验应用中得到了广泛且良好的使用。 图3. 展示了利用二维刻蚀技术对二维 FeTe 进行定向刻蚀的过程。(a) 使用蒸镀等技术在合适的基底上合成未刻蚀的二维 FeTe。(b) 引入刻蚀溶液以对 FeTe 进行二维刻蚀。(c) 进行定向刻蚀以实现所需的界面结构。(d) 开发自旋电子器件。 总结 设计出不同界面的反铁磁隧道结并提出可以通过调节隧穿界面的倾斜角来实现调控隧道磁阻(TMR)。基于第一性原理的量子输运计算证明:(1)电子隧穿界面的构型决定了磁轴平行和反平行时的透射系数的相对大小:即梯形界面时,TP > TAP;平行四边形时,TP < TAP。(2)界面的倾斜角与极化强度和 TMR 有明显的依关系,即倾斜角越大 TMR 越大。该研究提出了一种前所未有的 TMR 调节机制,为 AFM 材料在 MRAM 领域的应用提供了新的途径。 参考文献 Liu, X.; Yu, G.; He, K.Q. ; Xiao, Y.; Zhu, S.C.; Shen, L.; Origin and enhancement of magnetoresistance in antiferromagnetic tunnel junctions: spin channel selection rules. Materials […]

化学链燃烧中钙钛矿型 AFeO3 载氧体(A=Ca,Sr,La)反应性调控及机理探究

Posted · Add Comment

研究背景 化学链燃烧(CLC)是一种创新的能量转换技术,具有高效的二氧化碳捕获能力。在 CLC 中,金属氧化物被广泛用作氧载体(OCs)材料通过氧化还原反应在反应器之间转移晶格氧(O),无需空气分离装置。因此,开发具有高反应活性、稳定循环性能和高携氧能力的载氧体是 CLC 的关键。由于各种金属的协同作用,设计并制备了具有钙钛矿结构的 ABO3 等多金属复合载氧体,鉴于其独特的可调结构,被认为是有开发潜力的载氧体材料。 研究内容 在 AMS 计算软件中 BAND 周期性体系第一性原理计算模块完成了包含自旋极化的 DFT 计算。构建了几个具有不同晶面的 CaFeO3 模型,CaFeO3 模型中 Ca 原子分别被 Sr 和 La 原子取代得到 SrFeO3 和 LaFeO3 平板模型,优化了它们的几何结构,并获得了优化结构的形成能。 图1. AFeO3 载氧体模型:(a)CaFeO3 原胞模型;(b)CaFeO3(010)Slab 模型;(c)SrFeO3(010)Slab 模型;(d)LaFeO3(010)Slab 模型 图 2. 不同晶面 CaFeO3 模型和 SrFeO3(010) 及 LaFeO3(010) 模型的形成能 通过 DOS 分析对 AFeO3 载氧体电子性质及其反应性研究。DOS 分析结果表明:AFeO3 载氧体的电子性质主要受 A 位取代金属原子类型及其电子分布的影响。其中,A 位分别为 Ca […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •