双离子型重氮族亚胺在氧化还原催化中的突破

Posted · Add Comment

一、研究背景 过渡金属因其可变价和d轨道特性长期主导氧化还原催化,而主族元素因缺乏d轨道,一度被认为活性有限。但近年研究发现,15族元素(Pn = P, As, Sb, Bi)的低价化合物,尤其是锑和铋,凭借孤对电子的特殊性质,也能表现出类似过渡金属的反应模式。已有低价重氮族化合物虽能实现小分子活化,却受限于配体刚性大、可调性不足、副反应较多,难以进一步拓展。为解决这一问题,英国帝国理工学院、伦敦玛丽女王大学与德国萨尔大学团队合作,设计了一类前所未有的双离子型(zwitterionic)重氮族化合物。其核心创新在于引入双 (NHC) 硼酸盐配体,既带有阴离子电荷,又具强 σ 供电子能力,并可通过取代基灵活调控,为主族元素催化提供了新可能。 图1. (a)已有低价Pn体系;(b)双(NHC)硼酸盐配体策略 二、研究内容 在结构表征上,研究团队通过单晶X射线衍射(SC-XRD)揭示了Sb(I) 和Bi(I) 化合物的稳定几何构型(图2),表明这一体系能有效稳定低价态Pn中心。 图2. Sb(I) 化合物 4a 与 Bi(I) 化合物 5a 为了揭示电子特征,作者开展了系统的密度泛函理论(DFT)计算。化学成键分析结果表明,Pn中心整体带正电荷,但仍保留两对孤电子:一对主要呈s型,另一对为p型。自然键轨道(NBO)与自然共振理论(NRT)分析显示,其主要共振结构可表述为“Pn 带两对孤电子、两个 Pn–C 单键”。基于AMS的ADF模块进一步的能量分解分析-自然价键轨道理论分析(EDA-NOCV,图3)表明,配体与Pn中心的相互作用以强 σ 供给为主,而π反馈较弱,整体具有明显的离子性。这些计算结果与实验中观察到的高稳定性和反应多样性高度吻合。 图3. 配体与 Sb 中心的 σ 供给与 π 反馈作用 在反应活性方面,这些化合物可与碘甲烷、二硫化物、含氟芳烃、酰氯和重氮盐发生氧化加成,并进一步经历还原消除(如图4所示),包括C–H活化及罕见的Si–S脱氢偶联。这些转化在主族化学中极为少见,显示了其模拟过渡金属氧化还原行为的潜力。 图4.极性亲电试剂与锑化物 4a 的氧化加成 在催化性能探索中,作者以氢氟化反应(HDF)为模型反应,验证了该体系的应用潜力。以锑 (I) 化合物4a为催化剂,多氟芳烃在温和条件下即可定量转化。机理研究表明,反应遵循 Sb(I)/Sb(III) 氧化还原循环,其中 C–F 键的氧化加成是决速步骤(图 5)。值得注意的是,该机理与过渡金属催化高度相似,却完全由主族元素实现,具有重要意义。此外,该体系还能催化硅烷脱氢硫化反应,在生成 Si–S 键的同时伴随氢气释放,为能源化学中的氢气生成与小分子活化提供了新思路。 图5. 4a […]

锌离子导电 MOF 界面层助力高稳定性水系锌电池

Posted · Add Comment

研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo Yoo 教授课题组提出了一种新策略:利用导锌金属有机框架(ZIF-7/SA )构筑功能化界面层,以同时解决枝晶和副反应问题。 图 1. ZIF-7/SA 薄膜的各类表征以及机制示意图 研究内容 本研究的核心在于设计并合成以 SA 作为黏结剂,与 ZIF-7 复合一种在锌负极上构建保护涂层,并将其作为人工界面层修饰在锌金属表面,以实现对锌沉积/剥离过程的调控。研究主要包括以下几个方面: 1,ZIF-7/SA界面层的构筑与表征 研究团队将 ZIF-7 与海藻酸钠(SA)复合涂覆在锌片表面,形成厚度约 10 μm 的致密界面层 ZIF-7/SA 薄膜。SEM 显示表面平整,FTIR 证明 SA 羧基与 Zn²⁺ 发生配位,结构稳定。 图 2. ZIF-7/SA的 SEM、FTIR方法表征结果 2,电化学性能测试 在对称电池中,裸 Zn 仅稳定 35 小时,而 ZIF-7/SA 可循环超 1800 小时,在 20 mA cm⁻² […]

基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究

Posted · Add Comment

研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; 发光层及电荷传输层所采 用的分子混合材料; 激子过程中复杂的物理机制,涵盖激子的生成、传输及相互作用; 覆盖从纳秒级光物理过程到亚毫秒级载流子传输以及低迁移率层状材料中弛豫过程的广泛时间尺度 虽然宏观连续体漂移-扩散模型可以在器件尺度上描述电流密度, 但在应对主客体分子的分子级混合及其对激子过程速率的影响时仍存在局限。而基于密度泛函理论的微观原子级模型能够揭示单个分子或晶体系统的电学与光学特性,但将此模型应用于完整 OLED 堆叠结构的仿真仍充满挑战。 研究内容 华南师范大学华南先进光电子研究院彩色动态电子纸研究所刘飞龙课题组围绕 2019 年华南理工大学在Nature Communications 报道的一种高性能 TADF 型白光 OLED 器件展开研究。该文章中提出了一种高效发光的荧光 WOLED 器件,并且做了三种不同的器件来证明器件的高效性。该器件在合理的结构设计下实现了约 20.5%的外量子效率和优异的器件寿命,展现出良好的应用前景。然而,该文章并未对其中的橙色 TADF 发光材料 FDQPXZ 是如何敏化蓝色 TADF 材料 DMAC-DPS 这一关键过程进行深入探讨。理解这一能量转移过程的底层物理机制,对于未来设计更高效率的 WOLED 器件至关重要。 本研究通过 Bumblebee 软件进行三维动力学蒙特卡洛模拟,仅使用一组材料参数就成功复现了多种实验表征良好的 TADF WOLED 堆叠结构的性质,包括:电流密度-电压特性、外量子效率滚降特性及瞬态光致发光特性。针对具有混合发光层和多种器件设计的复杂多层 OLED 堆叠结构同步优化提取了电子和激子器件参数。该研究定量揭示了电子能级结构、激子能量与电荷传输及激子过程速率之间的复杂相互作用机制,系统阐释了所研究器件的高效机理。基于这些物理认知进一步提出了具有更高效率的创新器件设计方案。 图 1 器件 1 优化前后能级示意和空穴分布图 2019 […]

炔烃插入-双金(I)络合物引发金催化机制新思考

Posted · Add Comment

背景 过去二十年,金(I)络合物因其优异的 π 活化能力,在均相催化领域大放异彩。特别是在炔烃的活化转化方面,阳离子型金(I)络合物已被广泛应用。然而,中性、配位饱和的金(I)络合物通常被认为催化能力弱、难以实现插入反应等过渡金属常规反应步骤。尽管已有零星研究报道了金(I)–X 键(X 为氢或杂原子)与炔烃发生插入反应,但几乎全部集中在单金属体系,且普遍需要高温或过量底物。近日,西班牙塞维利亚大学 Pablo Ríos 教授团队联合马德里康普顿斯大学 Israel Fernandez 教授在 Chemical Science 期刊上发表最新研究,首次系统性地揭示了双金(I)炔基络合物在插入反应中的独特反应路径,并通过实验和理论结合,阐明了第二个金原子如何降低能垒、改变反应方式。这项研究不仅刷新了人们对金(I)络合物反应性的认知,也为构建多金属协同催化体系提供了新思路。 图1. 由 DMAD 插入得到的Au( I ) 复合物的例子 研究内容 研究者合成了一类以 NHC(IPr 与 SIPr)为配体的双金(I)炔基络合物(化合物 7 与 8),并通过 X 射线单晶衍射确认其结构,合成方法如图2所示。这些对称型络合物在室温下即可与电子缺陷炔烃 DMAD 反应,生成 Z-构型烯炔产物。而对比实验发现,单金属络合物(如IPrAu–C≡CSiMe₃)在相同底物下需要 110°C 以上高温才可实现插入。不仅如此,研究团队对反应动力学进行了系统分析:双金体系在 25°C 下即可完成反应,表观活化自由能 ΔG‡ 仅为 22.6 kcal/mol;SIPr 取代后的 8 号络合物因电子密度提高,反而反应稍慢,这表明金–配体反作用也起关键作用;单金体系反应活化能高达 30 kcal/mol,难以在常温下进行。 图2.双金属乙炔化物 7和8的合成 理论计算则揭示了一个前所未有的“分步插入机制”,而非文献中常见的协同插入路径:DMAD 的 LUMO 为 C≡C […]

打破禁区,首例s区-镧系金属成键配合物问世

Posted · Add Comment

研究背景 镧系金属由于其 4f 轨道高度屏蔽、径向扩展性弱,难以与其他原子轨道有效重叠,长期被视为不参与共价成键的“惰性”金属。在多数配合物中,镧系元素仅通过静电作用与配体中的 O 或 N 等硬碱相互作用,呈现典型的离子型键合行为。 相比之下,镧系–金属之间的直接金属–金属键(Ln–M)极为罕见,已知例子多限于 Ln–p 区金属(如 Sn、Ga、Al)体系,且多依赖阴离子桥连或范德华相互作用。镧系–s区金属(如Mg、Ca)之间的共价成键此前从未被实验证实,主要因两者都电正性极强、缺乏成键轨道匹配。 研究内容 为探索镧系与 s 区金属之间是否存在可控、可设计的 M–M 成键行为,德国埃尔朗根-纽伦堡大学 Harder 课题组构建了一个以中性镁配体为桥、实现 Mg–Yb 直接成键的复合物。该工作于 2025 年发表于 JACS,并以 Mg–Ca 体系为参照,首次实现 s 区–镧系金属间的系统对比研究。 图1. Mg–Yb直接成键的复合物结构 作者使用 [(BDI*)MgNa]₂ 作为反应平台,该中性二聚体含有两个低价镁中心(形式上为 Mg⁰),通过 Na⁺ 桥联。其与 Yb[N(SiMe₃)₂]₂ 反应,得到目标化合物 2-Yb,其晶体结构清晰显示出 Mg–Yb 之间存在明确的成键距离(3.466 Å),且整体框架与已报道的 2-Ca 结构几乎完全一致。 图2.  (a) 2 -Yb、拟合 2 -Yb(红色)和 2 -Ca(绿色)(b)5 -Yb、(c) 分解产物 6 的晶体结构 图3. 含 […]

从核磁共振特征看Pt单原子催化剂的配位环境

Posted · Add Comment

摘要 将原子分散物种与受控结构结合在一起的负载型金属催化剂,是催化材料设计的前沿领域,对反应性和金属高利用率提供了卓越的控制能力,接近分子级的精度。然而准确解析局部金属配位环境仍然面临挑战,它仍然阻碍着结构-活性关系认知的发展,而结构-活性关系是在不同应用领域中,优化设计所必需的信息。虽然电子显微镜能够揭示原子分散情况,但在多相催化中使用的传统光谱方法只能提供平均化的结构信息。里昂第一大学、苏黎世联邦理工学院、丹麦奥胡斯大学的研究者们,在最近发表于 Nature 的文章中,证明 195Pt 固态核磁共振(NMR)光谱是表征各种载体上原子分散 Pt 位点(即所谓的单原子催化剂 SAC)的有力工具。使用蒙特卡罗模拟,将 NMR 光谱转换为 SAC 特征信号,以分子精度描述配位环境,从而能够定量评估 Pt 位点分布情况及其均匀性。这种方法可以跟踪合成参数的影响,揭示特定步骤和载体类型的影响,还可以监测反应的变化,为具有目标结构的 SAC 可重复开发提供了关键见解。除了 SAC 之外,这种方法还为研究更复杂的结构奠定了基础,例如包含各种 NMR 活性金属的双原子或单簇催化剂。 本文使用 AMS2022 中的 ADF 模块对一系列 Pt(II) 模型配合物进行了几何结构优化,并计算了它们的 195 Pt NMR 光谱参数,计算所使用参数:PBE0 杂化泛函,中心 Pt 原子使用 QZ4P 基组,第一配位壳 Pt 使用TZP基组,其他原子使用 DZP 基组,相对论效应采用 ADF 中的 ZORA 方法处理。通过对参考化合物库的实验值和计算的各向同性化学屏蔽值进行线性回归,得到各向异性化学位移值。 其他相关研究 几乎同期,在美国的其他研究团队,使用 ADF 的相同的功能,在 J. Am. Chem. Soc. 也发表了非常类似的研究:99Ru Solid-State Nuclear […]

化学链燃烧中钙钛矿型 AFeO3 载氧体(A=Ca,Sr,La)反应性调控及机理探究

Posted · Add Comment

研究背景 化学链燃烧(CLC)是一种创新的能量转换技术,具有高效的二氧化碳捕获能力。在 CLC 中,金属氧化物被广泛用作氧载体(OCs)材料通过氧化还原反应在反应器之间转移晶格氧(O),无需空气分离装置。因此,开发具有高反应活性、稳定循环性能和高携氧能力的载氧体是 CLC 的关键。由于各种金属的协同作用,设计并制备了具有钙钛矿结构的 ABO3 等多金属复合载氧体,鉴于其独特的可调结构,被认为是有开发潜力的载氧体材料。 研究内容 在 AMS 计算软件中 BAND 周期性体系第一性原理计算模块完成了包含自旋极化的 DFT 计算。构建了几个具有不同晶面的 CaFeO3 模型,CaFeO3 模型中 Ca 原子分别被 Sr 和 La 原子取代得到 SrFeO3 和 LaFeO3 平板模型,优化了它们的几何结构,并获得了优化结构的形成能。 图1. AFeO3 载氧体模型:(a)CaFeO3 原胞模型;(b)CaFeO3(010)Slab 模型;(c)SrFeO3(010)Slab 模型;(d)LaFeO3(010)Slab 模型 图 2. 不同晶面 CaFeO3 模型和 SrFeO3(010) 及 LaFeO3(010) 模型的形成能 通过 DOS 分析对 AFeO3 载氧体电子性质及其反应性研究。DOS 分析结果表明:AFeO3 载氧体的电子性质主要受 A 位取代金属原子类型及其电子分布的影响。其中,A 位分别为 Ca […]

AMS2025 新版发布

Posted · Add Comment

近年在分子动力学模拟,尤其是涉及化学反应的分子动力学模拟、燃烧与裂解领域,AMS 成为成功应用的佼佼者,其高速计算、实用的分析功能,得到用户广泛认可。在力场参数拟合、机器学习方面也被研究者们迅速运用起来。AMS 一直保持着强劲的创新,在传统量子化学、第一性原理材料计算、OLED 器件模拟等领域持续改进。 OLED Workflow 生成不同材料的参数,作为 Bumblebee 的输入,以模拟 OLED 像素特征与性能 计算提速 5 倍 图形界面调用 Lammps ADF – 量子化学 ROKS-TDA 限制性开壳层的激发态计算 精确 IP 值计算:顶点校正 GW 方法 基于 ROSE 的激子转移积分 基于片段轨道的 CDFT,能够有效将电荷局限到体系的某个局部,并支持此类体系的分子轨道计算、能级计算、EDA 分析、ETS-NOCV 分析、转移积分计算等 机器学习 最新的机器学习势:CHGNet, FairChem, MACE, MatterSim, ORB, 以及更多 基于其他 Python 环境的 ASE 计算器 图形界面 新的 Packmol 界面:非均相体系支持设定非固体区域的密度、支持按摩尔比填充, Jupyter Notebooks 图形界面响应速度大幅度提升,大体系显示流畅度大幅度提升 Quantum ESPRESSO – […]

【辽宁工程技术大学】褐煤在ReaxFF MD高温条件下的燃烧机理分析(Fuel 2025)

Posted · Add Comment

研究背景 褐煤作为一种低阶煤,有挥发分和水分含量高的特点,导致其热值较低且易发生自燃,严重影响着能演工业的储存、运输和利用。当前研究从宏观层面揭示了褐煤的燃烧机制,但其背后具体的分子级燃烧特性尚未被充分理解,特别是在不同高温条件下的反应路径与动力学行为仍缺乏系统研究。目前,对于褐煤在高温下燃烧行为的系统性数据匮乏,制约了其化学动力学机制的深入挖掘。因此,深入了解褐煤的燃烧特性与自燃特性,并在此基础上优化其燃烧过程,对于提高能源利用效率、减少环境污染具有重要的现实意义。本文以神木褐煤为对象,基于表征实验构建并优化其大分子结构模型,采用Amsterdam Modeling Suite(AMS)软件与ReaxFF MD方法,对其在不同高温条件下的燃烧过程进行了系统模拟。重点分析了不同温度下神木褐煤的总势能变化、燃烧产物特征及其高温燃烧机制。模拟结果验证了自由基在煤燃烧反应链中的关键作用,尤其在高温条件下,通过自由基的持续生成与消耗维持复杂的燃烧过程。目前该文于2025年4月6日以“Construction of macromolecular model of Shenmu lignite and study of its high-temperature combustion mechanism using ReaxFF MD simulation”为题在Fuel(中科院SCI二区 TOP)期刊上发表。第一作者为辽宁工程技术大学大学安全科学与工程学院贾进章教授,通讯作者为2022级硕士研究生田昊同学。本工作得到国家自然科学基金(No. 52174183,52374203)和辽宁省博士科研启动基金项目(No.2023-BS-203)的资助。 图文速览 图1 SM 褐煤的XPS光谱 图2. SM褐煤中元素氮和硫的峰值拟合光谱(a)氮;(b)硫 图3. SM褐煤样品的13C NMR分峰拟合光谱 图 4. SM褐煤的实验13C NMR光谱与模型计算13C NMR光谱的比较 图 5. SM褐煤大分子结构模型(a)优化前;(b)优化后 图6. 纯氧条件下SM褐煤的高温燃烧模拟 图7. 不同温度下褐煤势能随时间的变化情况 图8. 四种气态产物在不同温度下的时间演变(a)O2;(b)H2O;(c)CO2;(d)CO 图9. 三种自由基在不同温度下的时间演变 图 10. 不同温度下 SM 褐煤燃烧的反应总数变化 图11. […]

【天津大学】等离子激元纳腔中分子与金属间电子转移机制理论研究 (ACS Nano 2025)

Posted · Add Comment

摘要 等离激元催化可通过光驱动化学反应,在能源转化和绿色化工等领域展现出广阔的应用前景。然而,在原子尺度上,关于等离激元与分子耦合过程中电子转移机制的理解仍不充分。近期,天津大学陈星教授团队在《ACS Nano》上发表研究成果,系统探讨了等离子激元纳腔中分子与金属之间电子转移的复杂动态过程。从空间分布和原子尺度出发,深入剖析了电子转移机制,为定制化等离激元纳米催化剂的理性设计提供了坚实的理论支撑。研究表明,通过精确调控分子和金属腔体的几何结构、方位特征及其光场的耦合模式,可有效调节电子转移行为,从而提升光催化反应的选择性与效率,这一策略为太阳能利用及可持续化学制造等前沿技术的发展提供了全新思路。 该工作引入了极化键模型(PBM),它如同一台 “原子级摄像机”,能够清晰捕捉纳米团簇与分子界面处的电子转移及键极化行为。研究发现,激发源的性质对电子转移行起到关键作用:当电子激发主要来自分子时,转移行为更为显著;而随着纳腔间距的增大,电子转移效率逐渐降低。此外,不同维度的分子-金属耦合体系表现出差异化的电子转移特性。其中,一维分子与金属簇之间的电子转移尤为明显,表明可以通过改变纳腔间距与分子尺寸来调控电子转移行为(如图1)。 图1. (a)在银纳米腔中的共轭炔烃。吸收光谱的来源分为三部分:(b)共轭炔烃分子(mol)的激发、(c)银(Ag)团簇的激发和mol与Ag间(inter)的电子转移 进一步分析表明,Ag 簇中第一层和第二层原子在界面极化过程中发挥主导作用,凸显出原子空间位置在电子转移与界面极化机制中的关键作用。从键极化角度来看,当激发源主要来自金属时,分子中靠近纳腔中心或方向与近场极化一致的化学键更易发生极化,且一维分子的键极化对金属激发的响应尤为敏感(如图2)。 图2. 分子-金属耦合体系(a)炔烃与纳腔间隙为 9.71 Å 的 AgNC (aly@AgNC),(b)联苯与纳腔间隙为 10.94 Å 的 AgNC (ph@AgNC),(c)石墨烯与纳腔间隙 为9.37 Å 的 AgNC(gf@AgNC)中激发能与键极化之间的相关性 此外,该工作还通过引入点电荷来模拟等离激元近场效应,发现金属尖端的正电荷可有效调控金属与分子之间的电子转移及分子内键的极化。这一发现不仅加深了对分子-金属耦合体系电子转移机制的理解,也为实现等离激元催化过程的精准调控提供了重要的理论依据(如图3)。 图3. (a)在不同局域场下的电子转移吸收光谱对比,(b) 施加正点电荷后,不同原子和化学键对极化率贡献变化的可视化。色盘图表示极化率变化的相位,白色虚线表示总极化率变化的相位 总结 本工作借助 AMS 软件中的 ADF 模块,系统计算了金属纳腔与分子耦合体系的光响应特性,并发展了极化键模型(PBM),将极化率分解为原子与键的两部分贡献,精准刻画了诱导电荷的重新分布过程,从原子尺度揭示了分子-金属耦合体系中电子转移的本质。 参考文献 Hujie He, Xueyang Zhen, Ran Chen, and Xing Chen, Mechanisms of Electron Transfer between Metal Clusters and Molecules in […]

 
  • 双离子型重氮族亚胺在氧化还原催化中的突破一、研究背景 过渡金属因其可变价和d轨道特性长期主导氧化还原催化,而主族元素因缺乏d轨道,一度被认为活性有限。但近年研究发现,15族元素(Pn = P As Sb Bi)的低价化合物,尤其是锑和铋,凭借孤对电子的特殊性质,也能表现出类似过渡金属的反应模式。已有低价重氮族化合物虽能实现小分子活化,却受限于配体刚性大、可调性不足、副反应较多,难以进一步拓展。为解决这一问题,英国帝国理工学院、伦敦玛丽女王大学与德国萨尔大学团队合作,设计了一类前所未有的双离子型(zwitterionic)重氮族化合物。其核心创新在于引入双 (NHC) 硼酸盐配体,既带有阴离子电荷,又具强 σ [...]
  • 低维电子材料与器件合集(四)电场和应变作用下 MoSSe/Borophene 异质结的可调谐肖特基势垒 通过第一性原理计算研究 Janus MoSSe/Borophene 异质结的电子性质。不同硼烯结构的 MoSSe/Borophene 异质结表现出不同的电子性质。所有异质结均呈现 p 型肖特基接触,电场和应变可以调制 MoSSe/Borophene 异质结的电子特性。随着外加电场的变化,带隙也会发生变化,从而实现欧姆接触。此外,应变引起 Janus MoSSe 从直接带隙到间接的带隙跃迁和接触类型的改变。结果表明,Janus MoSSe/Borophene 异质结的可调电子特性使其成为一种很有前途的电子器件候选材料。(Chemical Physics 2024 576: [...]
  • 锌离子导电 MOF 界面层助力高稳定性水系锌电池研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo [...]
  • 基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •