【QuantumATK亮点文章】半导体硅烯:一种具有蜂窝-笼目杂化晶格的二维硅同素异形体(ACS Materials Lett. 2021)

Posted · Add Comment

概述 近年来,以 MoS2、黑磷、Be2O2Se、InSe 为代表的二维半导体材料不断涌现,成为新一代电子器件的重要候选材料。然而,目前这些二维半导体材料都面临一个共同挑战,即与硅基半导体工艺的兼容性问题。虽然早在 2012 年即已发现的硅烯(silicene)被寄予厚望,但是原始硅烯是一种准零带隙的半金属,无法直接应用于半导体器件中。山东大学陈杰智教授团队从晶格拓扑结构入手,通过理论分析和计算提出了一种具有优异本征半导体特性的新型二维硅烯材料。该研究从晶格拓扑结构的角度为二维硅烯半导体材料设计提供了一个全新的思路。 研究工作 作者在二维蜂窝(honeycomb)晶格中引入笼目(kagome)晶格成分,设计了一种蜂窝-笼目杂化(hybrid honeycomb-kagome 简称 hhk) 的晶格拓扑结构。第一性原理计算证实了这种蜂窝-笼目杂化硅烯(hhk-silicene)在室温下具有高度的几何稳定性和热力学稳定性。此外,DFT 计算结果表明 hhk-silicene 是一种典型的本征半导体材料,具有 1.18 eV 的间接带隙以及很高的电子迁移率。当考虑全声子散射时,电子迁移率在室温下可达 360 cm2/Vs;而当抑制了面外晶格振动时(实验上可通过衬底或夹持效应实现),电子迁移率将高达 103-104 cm2/Vs,与在同等条件下蜂窝硅烯的电子迁移率相当。 此外,作者构建了 5 nm 沟道长度的 hhk-silicene 场效应晶体管,并采用 DFT-NEGF 方法模拟了器件的输出及转移特性。器件的输出特性表现出显著的负微分电阻效应,其电流峰谷比(PVR)可高达 106,且峰值电流可达 1774 μA/μm。这一效应主要源于 hhk-silicene 受限于笼目拓扑成分而形成的相对孤立的导带结构。器件的转移特性显示出出色的栅控能力,其开态电流可以很好地满足 ITRS(国际半导体技术蓝图)对 5 nm 高性能器件的要求。此外,与其他多种常见二维半导体晶体管相比,hhk-silicene 晶体管在开态电流和动态功耗方面均表现出了较强的竞争力,充分表明 hhk-silicene 在半导体器件应用方面具有巨大潜力。 参考 Pengpeng Sang (桑鹏鹏), Qianwen Wang(汪倩文), Wei Wei(魏巍), Fei Wang(王菲), Yuan Li(李元)*and Jiezhi […]

拓展杂化泛函在固体与器件模拟中的应用范围

Posted · Add Comment

概述 此前的 QuantumATK 版本中已经实现了基于 LCAO 基组的 HSE06 杂化泛函计算。与平面波基组相比,使用 LCAO 基组可将速度提高 100 倍,从而实现高效的大规模模拟。有关基于 LCAO 基组的杂化泛函计算的速度优势以及在半导体材料和异质结构中的应用,请参见: 超快的HSE杂化泛函计算 在此基础上,最新版本(2021.06)进一步优化和改进了 HSE06-LCAO 算法,实现了HSE06-DDH方法,并扩展了 HSE06-LCAO 的应用范围: 实现了自旋极化、自旋非共线和自旋-轨道耦合计算; 实现晶格张力计算,可以用于结构优化; 默认应用于 k 点采样的 Born-von Karman 边界条件可以大大减少内存消耗; 可以在 GUI 上调节 HSE06 的屏蔽距离和精确交换作用比例系数 alpha; 实现 HSE06-NEGF 计算,可以更好的模拟能带排列图和器件的伏安特性。 最新的版本(2021.06)中又新增加了 PBE0,B3LYP,B3LYP5 等杂化泛函,可以更精确的计算电子结构,结合能和扩散势垒等。 介电依赖的杂化泛函(HSE06-DDH) 基于 LCAO 基组的介电依赖杂化泛函(HSE06-DDH),用于快速和高精度地模拟复杂半导体材料、界面,以及由具有不同带隙的多层组成栅极堆叠结构的电子特性(例如先进半导体逻辑电路的 HKMG 堆叠)。 R-2020.09 版本引入的 HSE06-LCAO 使用固定的精确交换作用比例系数(alpha=0.25),这对低带隙的材料可以给出很好的带隙;新实现的HSE06-DDH 改进了这个方法,采用与材料有关的 alpha 值,这样可以对更广泛的材料给出更好的带隙; HSE06-DDH 对精确模拟界面和栅极堆叠结构的电子态非常重要; […]

机器学习力场ML-MTPs与流程自动化

Posted · Add Comment

概述 传统的力场往往受到其函数形式的限制,只能精确地描述相空间的一小部分。当研究对象包含复杂的材料或界面时,往往缺乏有效的力场形式和参数,通常的做法是通过将各种简单体系计算得来的经验势拼凑在一起。这样做不仅复杂、耗时,更重要的是,对于非晶结构和不同材料之间的界面等复杂体系常常会导致很大的误差。 基于机器学习的 Moment Tensor Potential(ML-MTPs)使用一组从头算的数据集进行模型训练,得到的力场参数可以用于模拟复杂的、多元素的晶体、非晶、液晶、界面、缺陷和掺杂等实际体系,计算精度接近从头算,计算速度却可以比从头算快数百到上千倍。 ML-MTPs的优势 相较于其他机器学习力场,ML-MTPs有多种优势: 描述符可以有效的描述多体效应 描述符不需要高度复杂和计算耗时的 ML 算法 训练集可以在不损伤精度的情况下扩增,不需要进行数据清洗 应用 MTPs 力场可以高精度、快速的计算原子间相互作用(能量、力、张力),进行分子动力学、结构优化和 NEB 模拟; 加速的 MD 方法包括可以对罕见事件采样、研究慢速机制的 fbMC等 模拟实际的、复杂的多元素晶体、无定形材料、界面,缺陷和杂质的迁移势垒、热输运、结晶过程等 精度与速度 使用力场进行计算比 DFT 快 100~1000 倍 MTP是目前市面上最精确和高效的 ML 力场 与从头算精度几乎一致,特别适合没有传统力场或需要更高精度的情况 自动化流程 MTPs 使用不同材料、元素的代表性结构的从头算结果数据集进行训练 QuantumATK 包含自动化的流程框架(Study Object 脚本),完成对力场模型的训练、模拟、验证,用户可以自行扩展和开发适用于新材料的 MTPs 力场 主动学习 MTP 可以在分子动力学(MD)模拟过程中自动增加 DFT 训练集 有助于更好的获得(高温条件下)无定形材料、液体的结构 使用delta方法可以扩展MTP(将多种MTPs叠加使用),用于更复杂的多层体系:训练MTP使得可以不损伤已有材料MTPs精度的前提下添加新的材料层。 参考 更强大、更灵活的材料动力学模拟工具 ForceField:QuantumATK的经验力场计算引擎 更多QuantumATK 最新版本的功能更新 QuantumATK […]

磁性与自旋电子学研究案例集(二)

Posted · Add Comment

其他相关文章 QuantumATK在磁性材料与自旋电子学研究中的应用 磁性与自旋性质模拟工具 磁性与自旋电子学研究案例集(一) 二维半金属FeX2(X=Cl,Br,I)铁磁体的本征自旋动力学性质 具有本征半金属性的超薄二维铁磁体在纳米自旋电子学器件设计中具有很好的应用前景。在这项工作中,作者利用密度泛函理论(DFT)系统地研究了一类有前途的二维铁磁体单层二卤化铁(FeX2,X=Cl,Br,I)的自旋输运和动力学性质。 详细介绍:https://www.fermitech.com.cn/quantumatk/pub-prb-2021-ghosh/ 机器学习方法分析无序MgAl2O4结构形成的磁性隧道结的隧道磁电阻 此项研究通过贝叶斯优化和最小绝对收缩选择算子(LASSO)技术结合第一性原理计算,探索了 Fe/无序MgAl2O4(MAO)/Fe(001)磁性隧道结(MTJ)的隧道磁电阻(TMR)效应。通过对 1728 个候选结构进行贝叶斯优化,得到了 TMR 最大的最优结构,在 300 次结构计算中达到收敛。 详细介绍:https://www.fermitech.com.cn/quantumatk/ml-mtj/ Bi2Se3拓扑绝缘体的表面态、表面薄层电流的自旋分布 Nonequilibrium spin texture within a thin layer below the surface of current-carrying topological insulator Bi2Se3: A first-principles quantum transport study Phys. Rev. B 92, 201406(R) Co2FeAl/MgO/Co2FeAl中的非共线输运研究 New J. Phys. 16 (2014) 103033 更多发表的文章参见【文章列表】。 立即试用 QuantumATK! 下载QuantumATK软件安装包 申请QuantumATK的全功能试用许可  

QuantumATK S-2021.06新版发布

Posted · Add Comment

QuantumATK完整的功能列表 QuantumATK功能列表 QuantumATK R-2020.09 新版发布 QuantumATK Q-2019.12 新版发布 QuantumATK P-2019.03新版发布 欢迎参加Synopsys官方举办的新版在线发布会,详情: Synopsys Webinar:QuantumATK S-2021.06新版发布会 新版功能亮点 机器学习(ML)力场(Moment Tensor Potentials,MTPs) 模拟实际的、复杂的多元素晶体、无定形材料、界面,缺陷和杂质的迁移势垒、热输运、结晶过程等,比 DFT 快 100~1000 倍 使用自动的流程工具对力场模型进行训练、验证和模拟,为新材料和新问题开发新的力场(内嵌硅的 MTP 力场) 使用从头算数据集进行训练、提升 MTPs 是目前市面上最精确和高效的 ML 力场 与从头算精度几乎一致,特别适合没有传统力场或需要更高精度的情况 主动学习 MTP 可以在分子动力学(MD)模拟过程中自动增加 DFT 训练集 有助于更好的获得(高温条件下)无定形材料、液体的结构 在 MD、NEB 和加速的 MD 方法中使用 MTP 力场 加速的 MD 方法包括可以对罕见事件采样、研究慢速机制的 fbMC等 复杂半导体材料、界面和栅极堆叠 使用 ML MTPs 获得真实的晶体、非晶材料、界面、栅极堆叠结构,模拟掺杂扩散、热传输和结晶过程等,研究诸如非晶 HfO2 和 […]

磁性与自旋电子学研究案例集(一)

Posted · Add Comment

其他相关文章 QuantumATK在磁性材料与自旋电子学研究中的应用 磁性与自旋性质模拟工具 单层CrOCl中磁相的双激励辅助工程和控制 二维材料的磁相控制和室温磁稳定性对于实现先进的自旋电子学和磁电功能是必不可少的。此工作利用第一性原理计算来全面研究二维 CrOCl 的磁性行为,揭示了应变和电场对材料的影响。研究揭示了单轴应变导致该层具有室温铁磁性的可行性,并检测到系统中存在铁磁-反铁磁相变,该相变沿扶手椅方向和锯齿方向是各向异性的。在这种应变效应之外,应变与电场的耦合使 CrOCl 的居里温度(Tc)~450 K 显著提高。这些基于详细模拟结果的预测显示了多激励磁相控制的前景,这对于实现磁机械传感器具有重要意义。 Phys. Chem. Chem. Phys., 2020, 22, 12806-12813(DOI:10.1039/d0cp01204a) 基于量子干涉的磁性分子结可开关自旋滤波器 摘要:控制分子结(MJs)的自旋度的能力在自旋电子学中有着广泛的应用。研究证明了自旋分辨量子干涉(SQI)能有效地改善 MJs 的自旋滤波行为。通过第一性原理计算结合非平衡格林函数研究,石墨烯/铬卟啉/石墨烯 MJs 的自旋分辨电荷输运表明,由于 SQI 的存在,可以通过改变分子长度来实现可调谐的自旋滤波行为。通过考虑温度和电子-声子相互作用的影响,揭示了这些 MJs 中与 SQI 相关的相位相干/退相干。此外,由于 Cr 增强的 SQI,在单卟啉结中掺杂Cr可以在低偏压区获得更高的自旋滤波效率。这些结果显示了 MJs 和 SQI 在分子集成电路中的巨大应用潜力,为利用量子干涉设计自旋分子器件提供了一种很有前途的方法。 Adv. Electron. Mater. 2020, 6, 2000689(DOI: 10.1002/aelm.202000689) CrI3/SiC范德华异质结构的磁稳定性和谷分裂研究 最近实验制备的 CrI3 单分子膜由于其长程 FM 有序性而备受关注。然而,很低的居里温度Tc(~45k)严重限制了它的实际应用。研究者构建了 CrI3 的范德华异质结构和 SiC 薄膜,以探索改善磁性能的方法。计算结果表明,当 Tc […]

离子电池和储能材料研究案例集(三)

Posted · Add Comment

更多相关文章: QuantumATK在电池/储能材料中的应用 离子电池和储能材料研究案例集(一) 离子电池和储能材料研究案例集(二) 离子电池和储能材料研究案例集(三)(本文) 多孔石墨:一种很有前途的锂离子电池超高储能负极材料 锂离子电池最具商业价值的负极仍然是石墨,但其锂离子储存量仅为 372 mA h/g。为了提高本征石墨负极(IGA)的性能,作者用从头算方法研究了三种空穴密度(35%:HGA35、46%:HGA 46 和 61%:HGA61)的多孔石墨负极(HGA)。值得注意的是,HGAs 的最大锂离子储存量高达 714-1689 mA h/g,是 IGA(372 mA h/g)的 4.5 倍。此外,锂离子的面内扩散势垒也从 0.57eV (IGA)降低到 0.35-0.42 eV(HGAs),表明锂离子的扩散速率较高。多孔结构可以打开一个额外的平面外锂离子扩散通道,扩散势垒仅为 IGA 扩散势垒的五分之一,这意味着在应用中加速了充放电过程。作者还证明了在吸附最大 Li 浓度时,HGAs 的表面积变化率相对较小,小于3%-14%。因此,多孔结构是改善锂离子电池石墨负极性能的有效途径。 相关文章:Electrochimica Acta 346 (2020) 136244 硅烯/氮化硼-范德华异质结构作为钠离子电池超快离子扩散负极材料 本文利用第一性原理方法对范德华(vdW)异质结作为负极材料进行了广泛的研究。通过 BN 与 Silicene 的协同作用,证明Silicene/BN-vdW 异质结构对于钠离子具有较低的扩散势垒、离子迁移率和较高的力学稳定性。同时,还可以保持高存储容量。所有这些结果表明,该复合体系作为 NIBs 的商业负极材料具有很高的潜力。 相关文章:Physica E 122 (2020) 114146 储能用硅纳米线对锂和钠的吸附和扩散的第一性原理研究 本文用密度泛函理论(DFT)计算了 Li/Na 在含衬底的 Si […]

离子电池和储能材料研究案例集(二)

Posted · Add Comment

更多相关文章: QuantumATK在电池/储能材料中的应用 离子电池和储能材料研究案例集(一) 离子电池和储能材料研究案例集(二)(本文) 离子电池和储能材料研究案例集(三) 增强多壁碳纳米管层间的钠离子存储 本文报道了一种利用多壁碳纳米管(MWCNT)作为钠离子电池活性阳极材料的有效方法,即通过增加多壁碳纳米管(MWCNT)外层的层间距离来实现。采用密度泛函紧束缚(DFTB)分子动力学模拟方法研究了其性能的提高。通过范德华修正的密度泛函理论计算,发现钠原子与部分膨胀的碳纳米管(PECNT)形成稳定的键合,结合能为-1.50ev,其中钠原子被固定在两个连续的碳纳米管中的两个六边形之间。波函数和电荷密度分析表明,这种结合本质上是物理吸附。这种较大的结合能放热特性有利于PECNT与钠原子之间的稳定键合,从而有助于提高电化学性能。在实验工作中,利用Hummer方法设计了具有膨胀夹层的MWCNT的部分开孔结构。研究发现,官能团的引入使碳纳米管的外层少数部分打开,而内部核心保持不变。这种性能的提高是由于碳纳米管中间层的膨胀,为钠离子的吸附和插层提供了足够的活性中心。PECNT在电流密度为20 mAh g-1时,比容量为510 mAh g-1,约为相同电流密度下原始MWCNT比容量的2.3倍。与其他碳基材料相比,这种比容量更高。PECNT在电流密度为200mA h g-1时,循环稳定性良好。基于我们的实验和理论结果,我们提出了在碳纳米管中储存钠离子的另一种前景。 相关文章:Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes. Nano Lett. 2018, 18, 9, 5688–5696;DOI: 10.1021/acs.nanolett.8b02275 Ge-Air 电池中不同掺杂类型和浓度的Ge(100)和Ge(111)负极的表面钝化 本文采用密度泛函理论对不同掺杂类型和浓度的Ge-air电池中Ge(100)和Ge(111)表面钝化进行了分析。与Ge(111)负极相比,Ge(100)负极与GeO2层结合能大,表面钝化受到抑制。同时,掺杂会阻碍Ge负极上GeO2层的形成,特别是p型掺杂,如B。p型Ge(100)/GeO2和Ge(111)/GeO2之间静电电位差和投影局域态密度的不同也揭示了它们在Ge-air电池中性能区别的根源。此外,I-V曲线显示Ge(100)/GeO2/Ge(100)器件比Ge(111)/GeO2/Ge(111)器件具有更高的电流。这将有助于从根本上理解不同取向和掺杂的Ge-air电池的电化学性能,为Ge-air电池中Ge阳极的设计提供指导。 相关文章:The surface passivation of Ge(100) and Ge(111) anodes in Ge–air batteries with different doping types and concentrations. RSC Adv., 2019, 9, 39582–39588 锑烯作为钠离子电池负极材料的模拟:第一性原理研究 此研究采用第一性原理计算方法,对钠离子电池(SIB)阳极用锑(Sb)的二维(2D)层进行了建模和研究,计算了化学吸附钠原子与锑原子之间的吸附能荷转移和态密度。半导体锑烯经钠吸附后具有金属性质,有利于电池的应用。较高的金属丰度和有效的电荷转移使锑烯具有更好的导电性。锑电极在钠化过程中是稳定的。我们预测最大比容量为421.63mAh/g,高于工业石墨阳极。计算了钠的活化能垒为0.12 eV,与其他考虑的材料相比,这是较低的。锑烯具有比容量高、膨胀小、扩散势垒小等优点,是SIB阳极材料的潜在候选材料。 相关文章:Modelling of antimonene as […]

离子电池和储能材料研究案例集(一)

Posted · Add Comment

更多相关文章: QuantumATK在电池/储能材料中的应用 离子电池和储能材料研究案例集(一)(本文) 离子电池和储能材料研究案例集(二) 离子电池和储能材料研究案例集(三) 磷酸铁锂中的锂离子扩散过程 磷酸铁锂(LiFePO4)是常用的电极材料。锂电池材料涉及复杂的材料结构、电子态性质和离子动力学过程。在 NanoLab 中,通过构建LiFePO4电极的结构,可以构造锂离子在其中扩散的路径,并使用 NEB 方法优化扩散路径。 NanoLab 中提供的工具还可以使用简谐过渡态理论(Harmonic Transition State Theory)求算扩散速率,详见实例教程。 实例教程:电池用磷酸铁锂(LiFePO4)材料中锂离子的扩散 锂电池材料的界面结构和电子态性质 研究者也可以使用界面研究工具方便的构建并研究界面的几何结构、电子态性质,详见实例教程。文章【J. Phys. Chem. C 2015, 119, 18066−18073】研究了Li2O2、Li2CO3及其界面处的电子导电和离子空位的影响;离子迁移的能垒;极化子输运的能垒。 相关文章:Vegge, T., Hummelshøj, J. S., Jin, C., Mekonnen, Y. S. & Garcia-Lastra, J. M. Role of Li 2 O 2 @Li 2 CO 3 Interfaces on Charge Transport in Nonaqueous […]

Rep. Prog. Phys.专题综述长文:二维晶体管中的肖特基势垒

Posted · Add Comment

摘要 近年来,二维半导体材料(2DSC)因其优异的电、磁、光、热和机械特性在电子、光电、热电等领域有着广阔的应用前景。二维半导体晶体管,作为电子、光电、热电等应用的基本器件单元,被人们广泛地研究。然而,由于缺乏一个有效和稳定的替代掺杂技术,二维半导体场效应晶体管(2DSC-FET)常常依赖金属电极直接接触来注入合适类型的载流子。而肖特基势垒普遍存在于金属-二维半导体界面中,显著地影响甚至主导大多数 2DSC-FET 的性能。因此,确定其肖特基势垒高度(SBH)变得非常重要。在金属-二维半导体界面处无费米能级钉扎(FLP)的理想情况下,SBH 可以用肖特基-莫特规则来预测,即金属的功函数分别与 2DSC 的电离能和亲合能的差值。但是由于界面处金属与2DSC的耦合,导致FLP效应普遍存在,SBH 一般会偏离肖特基-莫特规则。如何从理论上准确计算 2DSC-FET 的界面处的SBH是个很有挑战的问题。 北京大学物理学院吕劲课题组发展了运用第一性原理量子输运(QTS)方法,充分考虑晶体管中金属与 2DSC的相互作用和费米能钉扎效应来确定 2DSC-FET 的 SBH 的方法,突破了先前理论研究中没有充分考虑金属电极与沟道 2DSC 耦合的局限。他们对 22 种以上二维材料(涵盖 V 族烯,VI 族烯,过渡金属二硫化物 TMDs,III-VI 族,III-V 族,IV-VI 族化合物)与金属(Au, Pd, Pt, Ag, Sc, Ti, Ni, Cr, Sb, Ir, In, Graphene, Co, Cu, Al, Tl, MXene)在晶体管结构下的肖特基势垒进行了系统研究,结果与实验普遍吻合。有 4 篇论文成为 ESI 高被引论文: 《Scientific Reports》, 6 , 21786 (2016); 《Chemistry of […]

 
  • 锌离子导电 MOF 界面层助力高稳定性水系锌电池研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo [...]
  • 基于三维动力学蒙特卡洛模拟的白色 TADF OLED 激子利用率优化研究研究背景 过去几十年间,有机发光二极管(OLED)因其广色域、超高对比度、低能耗和柔性特性,已在显示市场获得广泛应用。高效白光有机发光二极管(WOLED)作为大尺寸照明光源、液晶背光和标识应用的潜力正日益凸显。尽管 WOLED 具备显著的应用前景,要实现商业化仍需攻克多项技术难题,其中提升发光效率尤为关键。要实现多层堆叠结构 WOLED 的理性设计与优化,必须对器件物理机制(尤其是电荷与激子动力学)建立精确的定量认知。构建完整 OLED 结构的物理模型面临以下几大挑 战: 真空或溶液工艺制备的分子薄膜具有非晶态特征; [...]
  • 弯曲 CrSBr 单层中的自驱动纯自旋光电流研究背景 在近年来二维材料研究的迅猛发展中,二维磁性半导体因其在自旋电子学和光电子学领域的潜在应用而受到广泛关注。CrSBr 作为一种新兴的二维铁磁材料,兼具层状结构、稳定的磁序和各向异性的电子性质,为实现多功能集成器件提供了理想平台。特别是在无外加电压条件下实现的自驱动光电流效应,能够显著降低器件功耗,是发展新一代低功耗光电器件的重要方向。同时,纯自旋光电流的产生可避免能量损耗与散射限制,有望在自旋输运、信息存储与量子计算等前沿领域发挥关键作用。 然而,在传统二维材料中实现纯自旋光电流面临诸多挑战,如缺乏稳定磁序、对称性抑制光生自旋分离等问题。研究发现,通过施加应变或引入弯曲形变,可以有效打破材料的空间反演对称性,从而诱导内部电场并激发新型光电效应。因此,探索在二维磁性材料中通过弯曲构型实现自驱动且自旋极化的光电响应,具有重要的理论价值与应用前景。该工作正是在这一背景下开展,旨在揭示弯曲 CrSBr 单层中自驱动纯自旋光电流的物理机制,并推动二维材料在低维自旋光电子器件中的应用探索。 研究内容 本研究基于第一性原理计算与非平衡格林函数方法,系统探索了在机械弯曲条件下,CrSBr 单层中产生自驱动纯自旋光电流的物理机制。研究发现,非弯曲 CrSBr 单层的实空间电荷密度分布图中,S 原子和 Br 原子都参与了 VBM,CBM 由 Cr 原子组成。然而,弯曲后单层 CrSBr 的电荷密度分布却发生了令人兴奋的变化。屈曲后,VBM 占据结构左侧,CBM 占据另一侧。随着弯曲深度的增加,电子-空穴分离更加明显。 图1. 单层 CrSBr 的(a)俯视图与侧视图(b)能带结构及轨道投影态密度(c)CBM 与 VBM 的实空间分布(d)挠曲深度 d=11 [...]
  • 炔烃插入-双金(I)络合物引发金催化机制新思考背景 过去二十年,金(I)络合物因其优异的 π 活化能力,在均相催化领域大放异彩。特别是在炔烃的活化转化方面,阳离子型金(I)络合物已被广泛应用。然而,中性、配位饱和的金(I)络合物通常被认为催化能力弱、难以实现插入反应等过渡金属常规反应步骤。尽管已有零星研究报道了金(I)–X 键(X 为氢或杂原子)与炔烃发生插入反应,但几乎全部集中在单金属体系,且普遍需要高温或过量底物。近日,西班牙塞维利亚大学 Pablo Ríos 教授团队联合马德里康普顿斯大学 Israel [...]
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •