铁电调控的双向光响应器件:基于Van der Waals α-In2Se3/NbX2(X = S, Se和Te)铁电二极管

Posted · Add Comment

简介

双向光电探测器是指在外部刺激下,其光电流可以在不同方向之间切换的设备。在神经形态视觉系统中,单个双向光电探测器可以分别表示兴奋和抑制行为中的正负权重,从而大大减少了人工神经网络中的硬件数量。现有的可调双向光电检测主要依赖于二维材料中的门控带对齐和金属与半导体复合系统中的光热效应。然而,门控工程的要求必然消耗额外的功率,并且光热效应的响应时间过长。

铁电二极管是一种特殊的二极管,其整流方向可以通过极化反转进行切换。基于铁电氧化物的传统体积型Fe二极管可以通过轻松切换其电极化方向来产生非易失的对称双向光响应。这种切换过程具有超快的动力学响应(<1纳秒)和高度可控性,无需持续的电压供应。切换机制源于由极化引起的表面电荷调制的肖特基势垒的高度(SBHs)和内建电场。然而,现有的铁电二极管还主要是基于传统的铁电氧化物材料,在实际应用中存在着较为严重的界面缺陷。

研究内容

利用QuantumATK软件,作者首次使用第一性原理结合量子输运的方法模拟了二维范德瓦尔斯型α-In2Se3/NbX2 (X = S,Se和Te) 铁电二极管的电学传输和光电输运性质。作者通过计算器件的局域器件态密度发现,可以通过调控α-In2Se3的铁电极化方向使器件从一个p-i结转化为一个n-i结,因此其整流方向就会发生转变,从而实现非易失性存储功能和双向光响应效应。作者的工作揭示了vdW Fe二极管在未来计算-传感器架构中具有巨大潜力。

图1. α-In2Se3/NbX2(X=S、Se和Te)铁电二极管中(a)向上极化和(b)向下极化态双向光电流的基本原理
图2. α-In2Se3/NbS2-Fe二极管的局域器件态密度(a)P向上和(b)P向下。子图(c)和(e)与(a)相同,但X分别为Se和Te。子图(d)和(f)与(b)相同,但X分别为Se和Te。每个子图中的两条水平白色虚线之间的距离表示铁电能带偏移(EFE)。中心区域和电极区域由垂直的白色虚线分隔开。
图3. (a) vdW α-In2Se3/NbS2铁电可开关二极管在不同铁电极化和沿y轴以偏振角θ入射的线偏振光下的光响应。子图(b)和(c)与(a)相同,但分别用于NbSe2和NbTe2。子图(d)与(a)相同,但对于沿着z轴入射的具有偏振角Φ的线偏振光。子图(e)和(f)与(d)相同,但分别用于NbSe2和NbTe2

参考

 
  • 标签

  •