分析增材制造冠状动脉支架【Simpleware应用】

Posted · Add Comment

概述 激光粉末床熔合技术(L-PBF)在金属增材制造(AM)方面的发展能够实现在微米范围内制造出高度多孔的细胞结构,因此理论上可以用于制造冠状动脉支架。 然而,工艺产生的不平整带来了特别的挑战,导致实际的 L-PBF 支架与预期支架(CAD 模型)在形态和力学性能上都存在偏差。本次分析着重关注 L-PBF 支架的膨胀行为。为进一步研究这些不平整造成的影响,基于真实和计算机重建L-PBF 支架建立实验和计算的联合框架。 亮点 使用Simpleware ScanIP 基于 µCT 数据重建 L-PBF 支架模型使用 Simpleware FE 生成稳健高效的支架网格模型,使用 Abaqus FEA 软件进行后续的结构分析基于重构的支架模型,采用实验测试和数值分析相结合的方法反演确定 L-PBF 支架的力学性能分析工艺产生的不平整对力学行为的影响,特别是 L-PBF 支架的膨胀行为。 实验数据 由 FIT Production GmbH 公司制造的激光粉末床融合(L-PBF)支架,考虑了两种分析 L-PBF 支架的后处理状态:1)热处理;2)电抛光和热处理。在支架被放置在两块板之间压缩以确定它们的径向强度之前,首先获取支架结构的 µCT 图像。在原始的实验中还对制造的支架做了进一步研究(详见参考信息)。 支架模型重建及FEA 将 µCT 数据导入 Simpleware ScanIP,使用 Flood Fill 工具进行分割,计算内部孔隙率。使用形态滤波器(erode、dilate、open和close)和 Boolean 布尔运算,生成内部空隙的三维模型。在 Simpleware FE 模块中对支架模型进行网格划分,由稳健的算法生成高质量的 FE 网格。然后将支架模型直接导入 SIMULIA Abaqus FEA 软件进行结构力学分析,重点研究支架在两个平板间的压缩和支架—球囊的扩张。 图:三个模型离散化图示。从左至右分别为:重建经热处理支架模型、重建经热处理和电抛光支架模型、以CAD模型为参考支架模型。 图:三个模型在压缩 0.8 mm 时外表面 […]

航空航天零件的增材制造与质量控制【Simpleware应用】

Posted · Add Comment

概述 增材制造(AM)是航天工业中非常有价值的工具,特别是与无损检测方法相结合,例如通过X射线计算机断层成像检测和分析缺陷;与有限元建模(FEM)相结合可以量化零部件中缺陷产生的影响。 本项目对用于 TARANIS 卫星的铝合金AM零件进行分析,确定材料内部孔隙的位置。利用 Simpleware 软件生成的有限元模型验证其结构完整性,采用随机振动模型与 CAD 建模和拓扑优化的结果进行对比。 亮点 使用 Simpleware ScanIP 软件对铝合金零件的X射线 CT 数据进行分割和处理使用 Simpleware FE 模块生成用于可在 ANSYS Workbench 中进行仿真的模型结果验证了 AM 方法用于比较CAD模型和设计零件,用于空间任务的应用 图像处理 利用 X 射线 CT 扫描获取包含缺陷的铝合金零件图像数据。采用 Simpleware ScanIP 软件从图像空间中分割出构件的主体,创建结构的初始掩模;删除与主体无连接部分的掩模区域。使用 Paint 和 Paint with threshold 工具精准分割结构,减少金属伪影。然后对分割后的几何结构进行平滑处理,增加网格划分前表面的平滑度。 图:在 Simpleware ScanIP 中由 CT 数据分割出铝合金 AM 零件 网格划分&有限元分析 图:在Simpleware生成可导出至ANSYS Workbench的网格模型 运用 Simpleware FE 模块的算法对结构进行网格划分,在保持感兴趣特征细节的同时自动生成粗网格。在结构顶部设置网格精细区域,并在螺孔区域添加节点集。最后将生成的网格模型导出至 ANSYS […]

逆向工程在汽车零部件设计中的应用【Simpleware应用】

Posted · Add Comment

概述 考虑到所用材料的复杂性和处理图像数据时对精度的需求,对汽车零部件进行逆向工程和分析是一个很大的挑战。 在本项目中,研究人员利用Simpleware ScanIP克服上述困难,将气缸盖的CT数据转换为适合检测缺陷和可导出为模拟准备的网格化高质量三维模型 为进行热模拟分析和考虑到铸造铝件时空洞的影响,因此将重点放在气门座的分割上。 亮点 从CT扫描获得3D图像数据在Simpleware ScanIP中进行可视化和初始分割使用形态学开滤波器和3D编辑工具改善气门座的分割在Simpleware FE中对处理后的图像数据进行网格划分将为模拟准备好的网格导出至LS-DYNA®进行热结构分析 可视化和图像分割 利用工业CT扫描设备以0.4mm×0.4mm×0.5mm的分辨率获取气缸盖的成像数据,并导入Simpleware ScanIP中。利用体积渲染、不透明度设置和颜色映射工具根据其底层灰度值进行可视化和重建数据,故此能够检测到铸件中微小缺陷/空洞。下一步的分割要将气门座与气缸分开。 气门座的3D编辑 在Simpleware ScanIP中,使用多种图像处理工具的组合将气门座从气缸盖中分割出来。初始阈值可以快速为各组件创建独立的掩模,在选中的感兴趣区域(ROI)使用形态学滤波器处理模型。利用Simpleware的3D编辑工具,在气门座周围创建一个3D ROI,用形态学开放滤波器去除小范围的噪声。这些工具使气缸盖中气门座的多部位分割更加准确和清晰。 图:使用Simpleware的3D编辑工具去除气门座周围的小范围噪声 结果 采用Simpleware FE对分割后的图像数据进行网格划分,并导入LS-DYNA®初步分析气缸盖中有无空洞对图像的影响。在考虑进气温度和排气温度的情况下, 比较有无空洞时空洞周围的主应力。该方法有助于深入了解零件在不同制造条件下的潜在性能,为缺陷分析奠定了未来研究的基础。 图:在LS-DYNA中分析气缸盖中有无空洞所造成的影响 参考 致谢与其他信息请参考英文原文。