保留髋关节骨骼的定制植入物设计

Posted · Add Comment

概述 髋臼骨溶解是髋关节置换术的常见并发症,由于植入物周围骨质流失导致松动将影响长期疗效。骨质流失的原因包括金属对聚乙烯轴承的磨损和假体周围感染,引发炎症从而破坏骨组织。 传统的 X 射线难以有效检测骨溶解,限制了骨质流失的早期识别,而 CT 扫描为规划翻修治疗评估骨质流失则更精准。英国皇家国家骨科医院(RNOH)的 Simpleware 软件用户通过 3D 打印的定制植入物重建严重的骨缺损并恢复丢失的骨结构。RNOH、Synopsys 和 implantcast GmbH 公司合作的治疗方法旨在最大限度地减少骨切除、改善定制植入物放置和手术效果。 亮点 定制化工作流程改善复杂骨科病例的术前计划 Simpleware 软件中基于 AI 的图像分割技术可加快实现从设计到手术的工作流程 与设计工具及术后复查的整合形成反馈循环,提高精度、降低并发症风险并支持更好的长期患者预后 定制植入物设计 在该工作流程中,RNOH 的外科医生筛选需要先进手术干预的复杂患者病例,例如存在严重骨质流失。Implantcast 公司的植入物设计师采用 Simpleware 软件根据患者 CT 扫描数据生成虚拟骨骼模型,基于人工智能的自动分割和解剖标记工具可简化此流程,随后通过手动编辑选项处理严重的成像伪影和其他复杂情况。 然后在骨骼模型中进行定制植入物的设计与定位,确保其与解剖结构精准适配。植入过程配备一体化手术导板实现螺钉的准确定位,假体由钛金属 3D 打印制成。 图:规划定制植入物的流程 术前规划和术后护理 与传统植入物设计通常需要侵袭性切除相比,这种定制化方法的一个关键好处就是减少了骨切除的需求。植入物的精度能够优化固定,而内置导板可提高术中螺钉轨迹的准确性以适应每个患者的骨质量和解剖结构。 这种针对患者的适配提高了植入物的稳定性和对准,并降低手术及术后并发症的风险。手术后通过 CT 扫描确认精准的植入物定位、评估如骨生物力学的恢复等结果。继而将这些见解反馈到设计流程中,不断完善未来的植入物规划。 图:特定患者的3D 模型改善植入物的设计和放置,降低手术并发症的风险 总结 定制化 3D 打印钛金属植入物对于重建复杂的骨缺损非常有效。金属对金属(MoM)植入物骨溶解的早期干预对防止进行性骨丢失至关重要,而横断面 CT 成像在评估骨完整性中发挥着关键作用。 由 RNOH、Synopsys 和 implantcast 开发针对特定患者的个性化治疗方案,通过 AI 驱动的工具和快速的迭代设计有效缩短了规划时间。外科医生和工程师之间的这种协作模式有助于每位患者获得最佳治疗效果。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/bone-preserving-design.html 相关讲座视频 https://register.gotowebinar.com/register/5775681147322486623 Di Laura, A., Hart, A., Henckel, J., 2025. Advancing custom […]

解析燃料与载氧体的相互作用:化学链燃烧中H2、CH4和CO在掺杂铁基载氧体表面位点特异性吸附机理与驱动机制研究

Posted · Add Comment

研究背景 反应物在固体表面的吸附行为是研究反应机理的关键。在化学链燃烧中,铁基载氧体通过氧化还原反应传递晶格氧实现燃料高效利用。过渡金属掺杂可显著提升其反应活性,但掺杂引起的微观结构变化对H₂、CH₄、CO 等小分子燃料吸附行为的影响机制尚不明确。本研究采用 DFT 计算,系统研究气体分子在纯相及过渡金属掺杂铁基载氧体表面的吸附能、电子结构和相互作用机制。 研究内容 采用 AMS 计算软件中 BAND 模块中完成 H2、CO、CH4 等分子在过渡金属掺杂的 α-Fe2O3 模型表面的吸附行为计算。获得了反应物在载氧体表面最稳定的吸附构型。EDA 揭示了 H2、CH4 和 CO 在纯相及过渡金属掺杂载氧体表面的相互作用能范围分别为:H2 为 -1.33 至 -3.48 kcal/mol,CH4 为 -4.59 至 -7.26 kcal/mol,CO 物理吸附为 -3.37 至 -6.19 kcal/mol,化学吸附为 -37.68 至 -49.45 kcal/mol。其中,H2 与CO 的最优吸附位点为桥位,吸附能分别为 -2.214 与 -5.973 kcal/mol。CH4 的最稳定吸附为空心位,吸附能为 -5.420 kcal/mol。吸附能顺序为:化学吸附 CO > 物理吸附 CO > CH4 > […]

QuantumATK 催化合集(一)

Posted · Add Comment

设计菱锌矿型 CuAl1-xTMₓO2 固溶体:3d 过渡金属自旋态在光(电)催化性能中的作用   本研究系统地探讨了 3d 过渡金属(TM)自旋态对 CuAl1-xTMxO2 固溶体结构与电子性质的影响,并揭示其对光(电)催化性能的重要作用。结果表明,Jahn–Teller 畸变是决定晶格参数及光(电)催化活性的重要因素。对于不具有 Jahn–Teller 畸变的固溶体,其晶格参数遵循 Vegard 定律;而在具有强畸变的体系中,晶格常数偏离线性规律,说明 TMO6 八面体的结构畸变对固溶度及晶格结构具有显著影响。在电子结构方面,具有弱 Jahn–Teller 畸变的固溶体,其能带特征受 O–Cu–O 与 TMO6 晶场效应的共同调控,导致带隙收窄与导带底(CBM)降低,从而影响氢析出反应(HER)势能。特别是 CuAl₀.₅Cr₀.₅O₂,因其光吸收能力与载流子分离效率的良好平衡,表现出显著增强的光电流密度和产氢速率。相比之下,CuAl1-xFexO2 中较弱的 Jahn–Teller 畸变会在导带底形成局域电子态,导致载流子迁移率降低。此外,对于 Jahn–Teller 畸变较强的体系(如 CuAl1-xTMxO2,TM = Mn, Ni),其电子性质从半导体逐渐过渡到半金属。其中,半金属性 CuAl₀.₉Mn₀.₁O₂ 能有效吸收红外光,并实现高效的光催化产氢与产氧反应。本研究揭示了过渡金属自旋态与 Jahn–Teller 畸变在调控 CuAl1-xTMxO2 光(电)催化性能中的关键作用,为设计高效多功能氧化物光催化材料提供了理论依据。(Materials Today Energy, 2024, 45: 101669. DOI:10.1016/j.mtener.2024.101669) 高熵氧化物:光催化 CO2 氢化领域的研究新前沿 本研究探讨了纳米结构高熵氧化物(HEOs)在光催化 CO2 氢化反应中的潜力,该反应在环境可持续发展和能源转化方面具有重要意义。研究者制备了一系列基于铈氧化物的稀土高熵氧化物,其具有萤石型晶体结构,用于紫外光驱动的 CO2 光催化氢化反应以生成高附加值燃料和石化前体化合物。研究发现,阳离子组成对高熵氧化物的催化选择性和活性具有显著影响。其中,Ce0.2Zr0.2La0.2Nd0.2Sm0.2O2-δ 催化剂在常温条件下表现出优异的 CO2 活化能力(14.4 molCO kgcat⁻¹·h⁻¹ 和 1.27 molCH₃OH kgcat⁻¹·h⁻¹),其甲醇与 CO 的选择性分别达到 7.84% 和 89.26%,整体性能较纯 CeO2 提高了约 4 […]

拓扑半金属界面电阻率的标度行为在垂直互连体系中的应用

Posted · Add Comment

研究背景 随着集成电路特征尺寸持续向纳米甚至原子级别缩小,传统铜互连材料在高密度三维集成和垂直互连结构中的导电性能正面临严峻挑战。器件微缩导致的尺寸效应、界面散射与量子输运问题,使得金属互连的电阻率急剧上升,严重限制了器件的速度与能效。因此,寻找具有低界面电阻、高导电性和稳定尺寸标度行为的新型材料体系已成为先进互连技术的重要研究方向。 近年来,拓扑半金属因其独特的能带结构和高载流子迁移率,成为下一代电子互连材料的潜在候选。拓扑半金属在费米能级附近存在线状或点状狄拉克态,其电子输运特性受拓扑保护,能够显著抑制界面散射,从而在纳米尺度下保持较低的电阻率。这一特性为突破传统金属互连的性能瓶颈提供了新的可能。 然而,在器件实际应用中,界面效应仍是决定互连电阻的关键因素。随着器件尺寸的不断缩小,界面电阻率不再是常数,而表现出明显的标度行为,即其值随通道长度、厚度或界面粗糙度等几何参数变化而改变。理解并量化拓扑半金属界面的电阻率标度规律,对于准确评估其在垂直互连结构中的导电性能至关重要。 研究内容 本研究聚焦于拓扑半金属界面电阻率的标度行为及其在垂直互连体系中的应用。通过理论分析与计算模拟,探讨不同拓扑半金属在界面处的电子输运特征及尺寸依赖规律,旨在揭示拓扑保护态在降低界面散射、保持电阻稳定性方面的作用机制。这一研究不仅为理解拓扑材料的界面输运提供了新的物理图景,也为设计高性能、低功耗的三维互连结构提供了理论基础。 图 1. 所考虑各种界面结构的示意图(a)单界面结构(b)双界面结构,(c)和(d)是与(a)和(b)相同的界面结构,但在 y 方向上添加了真空以模拟薄膜。 对于单界面和双界面模型两种结构,考虑电子在体和薄膜中的传输,并通过在垂直于传输方向上添加真空来模拟。 图 2. 结构示意图(a)Cu(100)/Ta(100)(b)CoSi(100)/Ta(100),动量分辨电子透射谱(c)Cu(100)/Ta(100)(d)CoSi(100)/Ta(100) k 分辨透射谱显示 Cu/Ta 界面的透射谱透射率可达 T= 7 的区域,而靠近 Γ 点处透射率较低。CoSi/Ta 界面的透射谱在 BZ 边界有 4 个小的 T= 2 的区域,而其他地方的透射谱为零。CoSi/Ta 界面结构的低透射率是由于 BZ 中 CoSi 的体电子态密度(DOS)极低,集中在区角的 Weyl 节点附近。与 Cu 相比,CoSi/Ta 界面上的低电子透射率转化为高比电阻率。 图 3.(a)Cu/Ta 和(b)CoSi/Ta 的局域电子态密度(LDOS),(c)Cu/Ta 和(d)CoSi/Ta 在不同薄膜厚度下的动量分辨电子透射谱 从计算的域态密度(LDOS)可以发现,对于 Cu/Ta 界面是均匀的 LDOS,在薄膜表面附近没有明显变化。然而,在 CoSi/Ta 界面,Ta 区域的 LDOS 分布均匀,但在 CoSi 表面处 LDOS 强烈局域化,CoSi 内部区域的 LDOS 几乎为零。这是由于存在的 Weyl 节点和由此产生的拓扑保护表面态从布里渊带的中心延伸到角落,在 CoSi 薄膜中产生相对较少的靠近费米能级的体态和大量的导电表面态所导致的。 从计算的动量分辨电子透射谱可以发现,对于 Cu/Ta,使薄膜更厚(从 […]

基于 Nano-XCT 数据创建多级结构水泥基材料中的 3D 多离子腐蚀模型

Posted · Add Comment

概述 混凝土结构中钢筋的腐蚀是一个全球性问题。为评估钢筋混凝土中钢筋的退化,需要精确描述混凝土基体中的电流、电势及各种物质的浓度分布。尽管混凝土基体是一种具有复杂微观结构的非均质多孔材料,但以往的研究常将质量传输视为在均质材料中处理,通过其他因素(孔隙率、紧缩性、迂曲度)修正整体传输系数,从而得到所谓的有效系数(如扩散系数)。 本研究提出一种新方法,通过高分辨率 X 射线计算机断层扫描(XCT)获取混凝土的真实三维微观结构,经过处理后生成用于有限元计算的网格模型,最终与多物质传输体系及电势方程耦合求解。该方法能够更真实地描述混凝土和钢筋表面的离子运动与反应,进而更精准地评估导致钢筋质量损失及其位置的阳极和阴极电流。 试样制备与表征 由重量比为 3:1:0.5的砂、水泥、水制备 100 mm、150 mm 的立方体和 40 × 40 × 160 mm 的柱体砂浆试样。对硬化 2 天、28 天、90 天的试样进行强度测试,对水中养护 28 天、90 天的试样进行吸水性测试,采用压汞法测量孔隙率。针对水灰比为 0.5 的试样,采用 30.3% 作为凝胶孔隙率的设定值。 表:测量所得砂浆特性 图像处理 使用 Nano-XCT 技术对砂浆试样进行扫描,将图像数据裁剪为直径 46.8 μm、高 39 μm 的圆柱体,导入 Simpleware 软件中进行处理。基于灰度阈值将结构分割为四个相:含凝胶孔的水泥、毛细孔、浅色颗粒、深色颗粒。在 Simpleware FE 模块,采用 +FE Free 算法为分割模型创建用于模拟的 2D 和 3D 网格。生成包含 2221768 个四面体单元 3D 网格的设置参数:目标最小长度 1.4 μm,目标最大误差 0.23 […]

用于 Dirac-源场效应晶体管的横向 graphene/MoS2 异质结

Posted · Add Comment

研究背景 随着传统硅基场效应晶体管(FET)器件尺寸不断缩小,器件功耗和亚阈值摆幅(Subthreshold Swing, SS)问题愈发突出,传统 MOSFET 已难以满足低功耗、高性能逻辑电路的需求。为突破硅基器件的物理极限,新型二维材料及其异质结构被广泛研究,尤其是石墨烯和过渡金属二硫化物(TMDs)等材料。石墨烯因其高载流子迁移率和零带隙的特性,可用作 Dirac 源极实现高效率载流子注入,而 MoS2 等半导体二维材料具有可调节的带隙和优异的开关性能,将其与石墨烯横向连接形成异质结,可同时兼具高开态电流与低亚阈值摆幅的优势。近年来,Dirac 源-FET(DSFET)作为新型低功耗器件方案受到了广泛关注,但器件性能受限于源极掺杂浓度、能带匹配以及界面载流子传输效率等因素,如何通过优化异质结构设计实现陡坡开关、低功耗高性能仍是亟需解决的关键问题。本研究通过构建横向石墨烯/MoS2 异质结构,系统分析源极掺杂对器件亚阈值特性和开态电流的影响,为二维材料 FET 的设计提供了理论指导。 研究内容 基于第一性原理计算和量子输运模拟,我们系统地研究了基于横向 graphene/MoS2 异质结构的 Dirac-源场效应晶体管(DSFET)的输运特性。首先,由于石墨烯源的掺杂浓度会显著影响界面的能带对齐,从而影响 DSFET 的性能。因此,考虑六种不同的石墨烯源掺杂浓度并计算电流-电压输运特性曲线。 图1.(a)graphene/MoS2 横向异质结构 DSFET 的原理图(b)不同掺杂浓度下 graphene/MoS2 横向异质结构 DSFET 的电流-电压特性 我们发现过低的掺杂浓度会减少开态下从石墨烯源极注入的载流子浓度,不利于开态电流。因此,石墨烯源极的适度掺杂浓度对于石墨烯/二硫化钼界面的理想能带排列至关重要,这有利于实现高开态电流和陡峭的 SS 值。 图2. 不同源掺杂浓度下 graphene/MoS2 异质结构 DSFET 的态密度 为更好地理解不同源极掺杂浓度下亚阈值摆幅(SS)值的差异,在图 3 中展示了石墨烯源极的态密度(DOS)、源极载流子浓度分布以及 MoS2 沟道在亚阈值区域的态密度。亚阈值摆幅值变化最陡峭的亚阈值区域对应于栅极电压从 0 到 0.2 V 的范围(从关态到开态)。在源极载流子浓度高达 1×10²⁰e/cm³ 时,石墨烯源极的狄拉克点远高于器件的费米能级。 图3. 石墨烯源的 DOS(左)、源极载流子浓度分布(中)和 MoS2 沟道的 DOS(右)在不同掺杂浓度下 graphene/MoS2 异质结构 DSFET 的亚阈值区 一方面,由于界面态的钉扎作用,器件从关态(OFF)到开态(ON)时的界面肖特基势垒(SB)略微降低,电流增加主要归因于 SB 变薄;另一方面,界面态在开态通过三角形 SB 缩短了隧穿路径,从而增强了开态电流。 图4. 不同掺杂浓度下,graphene/MoS2 异质结构 DSFET 在开态和关态下的局部器件态密度投影(PLDOS) 总结 […]

低维电子材料与器件合集(五)

Posted · Add Comment

利用漏极态密度工程实现弹道冷源场效应晶体管中偏压无关的亚阈值摆幅 在便携式技术中集成的场效应晶体管迫切需要实现低功耗和对电源电压不敏感的稳定性能。本文提出了一种机制,可在弹道冷源场效应晶体管(CS-FETs)中实现偏压无关的低于 60 mV/dec 亚阈值摆幅(SS)以满足便携式电子器件的需求。第一性原理和量子输运模拟表明,在弹道输运条件下,漏极与源极之间导电模式数(NOCM)的能量对齐对于实现基于 C31/MoS2 的 CS-FET 的偏压无关 SS 至关重要。通过揭示 NOCM 与态密度(DOS)之间的联系,提出了一个器件模型以展示当漏极的 NOCM 与 DOS 在栅极能窗中具有相似斜率时,如何稳定器件在不同偏压下的 SS。本研究强调了漏极 DOS 工程在设计偏压不敏感的 CS-FET 中的重要性,并为便携式电子应用提供了新的设计思路。(Applied Physics Letters, 2024, 124(5). DOI:10.1063/5.0177388) Janus 型 MgZnXY(X, Y = O, S, Se, Te; X≠ Y)单层材料在短沟道场效应晶体管中的第一性原理研究 探索新的二维材料作为超尺度场效应晶体管(FETs)沟道是维持摩尔定律发展的迫切需求。在本研究中,利用第一性原理计算提出了 Janus 型 MgZnXY(X, Y = O, S, Se, Te; X ≠ Y)单层材料,并计算了其动力学和热稳定性。电子能带结构表明,所有稳定结构均为带隙在 2.03–3.40 eV(HSE06)之间的半导体,并具有极高的电子迁移率。受 MgZnXY 家族优异本征性质的启发,进一步研究了以 MgZnSSe […]

心肌干细胞移植治疗心肌梗死的生物力学研究

Posted · Add Comment

概述 生物材料和干细胞输送是治疗心肌梗死颇具前景的方法,然而其治疗效益背后的力学和生化机制仍需进一步阐明。本研究基于一只左心室梗死且心肌内注射了生物材料的大鼠心脏离体显微计算机断层扫描数据,创建心肌壁中层梗死区域的微观结构有限元模型,在模型的注射物内数值模拟地植入 9 个细胞。结合该模型与同一大鼠心脏的双心室模型,量化采用不同生物材料弹性模量(Einj)时一个心动周期内的细胞变形。 构建模型 通过对雄性大鼠的左前降支冠状动脉进行永久性结扎诱导心肌梗死,七天后将 100 μL 含铬酸铅的不透射线硅橡胶注射到梗死区域。随后取出心脏并进行离体 CT 扫描,将图像数据导入 Simpleware 软件重建双心室几何结构,呈现左、右心室的基本形态以及左心室游离壁中弥散注射物的微观结构细节。在 Simpleware FE 模块进行体积网格划分,心肌和注射物区域分别包含 147240 和 58902 个四面体单元。将网格模型导入 Abaqus 软件,通过识别生物材料注射物周围的节点确定梗死区域近似范围。采用基于规则的方法实现心外膜 -50° 至心内膜 80° 的肌纤维取向。 在 Simpleware 软件中通过减小心脏 CT 图像数据的间距进行重采样(由 30 μm 更改为 7.8 μm),重建左心室壁中层梗死区域 748 × 748 × 722 μm 体积的高分辨率微观结构。使用自定义 Python 脚本在注射区域内随机放置 15 个细胞模型,其中 6 个因位于心肌组织、模型边界或界面附近而被排除在分析之外。创建细胞膜、细胞质和细胞核的直径分别为 60 μm、55 μm、20 μm,通过布尔运算得到 5 μm 厚的细胞膜和 35 μm 厚的细胞质。 图:大鼠双心室及左心室壁中层(含注射区域移植细胞)微观结构的多尺度建模(a)双心室结构(b)双心室网格模型(c)显示梗死区域节点的网格模型(d)左心室壁中层微观结构模型的构建(e)微观结构的网格模型,其中心肌和注射物采用粗糙网格,细胞使用精细网格(f)单个细胞网格模型(g)模拟中的边界条件将双心室有限元网格的基底节点(红色)设为固定 结果与分析 当注射物的弹性模量 Einj = 7.4 […]

低维电子材料与器件合集(四)

Posted · Add Comment

电场和应变作用下 MoSSe/Borophene 异质结的可调谐肖特基势垒 通过第一性原理计算研究 Janus MoSSe/Borophene 异质结的电子性质。不同硼烯结构的 MoSSe/Borophene 异质结表现出不同的电子性质。所有异质结均呈现 p 型肖特基接触,电场和应变可以调制 MoSSe/Borophene 异质结的电子特性。随着外加电场的变化,带隙也会发生变化,从而实现欧姆接触。此外,应变引起 Janus MoSSe 从直接带隙到间接的带隙跃迁和接触类型的改变。结果表明,Janus MoSSe/Borophene 异质结的可调电子特性使其成为一种很有前途的电子器件候选材料。(Chemical Physics, 2024, 576: 112114. DOI:10.1016/j.chemphys.2023.112114) 基于自旋无隙半导体 Janus 型过渡金属氮化物 MXene 的栅压可控自旋整流二极管 随着自旋电子学技术的不断发展,自旋电子器件有望成为下一代电子器件发展的重要方向。然而,对于自旋整流二极管而言,如何提供大量自旋极化载流子仍是一个关键技术问题。传统的自旋极化注入模型采用铁磁体(FM)/半导体结构,但由于导电性失配会限制其极化注入效率,这使得寻找导电性介于金属与半导体之间的自旋无隙半导体成为解决该问题的有效途径。近年来,作为一种具有高自旋极化率的新型二维材料,MXene 被认为可以通过外场或邻近效应实现电子结构的调控。基于此,本研究提出一种 Janus 型过渡金属结构的 MXene,通过打破过渡金属的对称性调控其自旋特性。进一步研究发现,TiCrNO₂ 的能带结构可以通过施加外加电场实现有效调控,当外加电场强度为 1 V/Å 时,可由磁性半导体转变为自旋无隙半导体。在此基础上构建可调谐的自旋整流二极管,并结合第一性原理计算与非平衡格林函数方法研究自旋整流效应。结果表明,通过改变外加电场的强度,可以调节自旋整流二极管的整流比,其整流效率超过目前已报道二维整流器件的最高值。本研究为氮化物 MXene 在自旋电子器件中的应用提供了重要参考价值。(Diamond and Related Materials, 2024, 141: 110641. DOI:10.1016/j.diamond.2023.110641) 采用硅烯电极的 SnSe2 隧穿场效应晶体管开态电流优化研究 提升开态电流(Iₒₙ)对于隧穿场效应晶体管(TFET)的实际应用至关重要,本文利用从头算量子输运计算研究采用硅烯电极的 SnSe₂ TFET 提升 Iₒₙ 的可能性。最优器件结构是在 n 型和 p 型异质结 TFET(HetJ-TFET)中分别使用 p 型和 n 型范德瓦耳斯(vdW)硅烯/SnSe₂ 作为电极。令人鼓舞的是,n 型 HetJ-TFET […]

锌离子导电 MOF 界面层助力高稳定性水系锌电池

Posted · Add Comment

研究背景 随着可再生能源的快速发展,安全、高效、低成本的储能体系需求不断增长。相比锂离子电池,水系锌金属电池(ZMBs) 因其高理论容量(820 mAh g⁻¹)、低还原电位(-0.76 V vs. SHE)以及水系电解液的高安全性,成为下一代储能技术的有力候选者。然而,ZMBs 在商业化应用中仍面临两大关键难题:一是锌枝晶生长:在反复充放电过程中,锌离子在金属表面沉积不均匀,容易形成针状枝晶,刺穿隔膜,引发短路和电池失效。第二个难题是副反应严重:由于水的存在,锌金属在界面上会发生副反应(氢析出、腐蚀反应),导致库仑效率下降和循环寿命缩短。因此,如何通过界面调控来实现均匀锌沉积、抑制副反应,是目前研究的核心问题。已有研究尝试通过电解液优化、人工界面层构筑、合金化等方式来改善,但仍存在材料稳定性差、离子传输效率不足等局限性。在此背景下,来自日本筑波大学的 Eunjoo Yoo 教授课题组提出了一种新策略:利用导锌金属有机框架(ZIF-7/SA )构筑功能化界面层,以同时解决枝晶和副反应问题。 图 1. ZIF-7/SA 薄膜的各类表征以及机制示意图 研究内容 本研究的核心在于设计并合成以 SA 作为黏结剂,与 ZIF-7 复合一种在锌负极上构建保护涂层,并将其作为人工界面层修饰在锌金属表面,以实现对锌沉积/剥离过程的调控。研究主要包括以下几个方面: 1,ZIF-7/SA界面层的构筑与表征 研究团队将 ZIF-7 与海藻酸钠(SA)复合涂覆在锌片表面,形成厚度约 10 μm 的致密界面层 ZIF-7/SA 薄膜。SEM 显示表面平整,FTIR 证明 SA 羧基与 Zn²⁺ 发生配位,结构稳定。 图 2. ZIF-7/SA的 SEM、FTIR方法表征结果 2,电化学性能测试 在对称电池中,裸 Zn 仅稳定 35 小时,而 ZIF-7/SA 可循环超 1800 小时,在 20 mA cm⁻² […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •