Bumblebee – OLED与OFET器件模拟平台

Posted · Add Comment

通过 3D 动力学蒙特卡洛,模拟载流子的扩散、光发射和器件随时间的退化,研究OLED材料的长期行为。了解缺陷形成、材料老化,以及电子、空穴在OLED层中的传输,帮助OLED器件效率与寿命提升研究。Bumblebee将OLED器件研发成本降低约60%,上市时间降低约40%。 方法模型 三维动力学蒙特卡洛 考虑堆叠中的纳米结构,包括传输、体异质结、染料敏化剂相互作用、聚合物排列和掺杂剂 非晶态无序导致分子性质的变化,如高能态密度和跃迁偶极排列 包括分子之间的长程静电相互作用 主客体分布、层界面、掺杂梯度、聚合物网络和其他复杂结构 功能清单 堆栈优化 通过明确的堆叠形态和时间演变,研究堆栈中的微观过程,包括瞬态响应、小信号分析和脉冲实验 模拟最先进的OLED材料,包括TADF发射体和超荧光 模拟激子在主体和客体分子之间的分布、转移和捕获 复杂的光电过程:激子湮灭、极化子猝灭、三重态收获、激基复合物、振子耦合 结合AMS软件模拟薄膜的物理气相沉积,计算材料分子IP、EA,偶极矩 光输出耦合,用于光管理 应用案例 堆叠形态对J-V曲线的影响模拟 内/外量子效率滚降 模拟不同电压下的事件分布,辅助筛选发射体与损失过程 不同电压下的电子、空穴、(非)辐射衰减率、光生成速率、解离速率、湮灭与猝灭速率的层间剖面图 Bumblebee应用案例教程 基本使用 Basic Usage Bulk Simulation Parameter Screening Exciton Simulation Acceleration 高阶教程 Layer Morphology Polymeric OLED Device Lifetime Photoluminescence Transient Switching OFET Simulation Device Equilibration Advanced Initialization 申请试用 登陆 https://www.scm.com/free-trial 如实填写资料并在第三页勾选Bumblebee模块

光开关顺铂类似物的光控抗癌活性和细胞摄取(J. Med. Chem 2024)

Posted · Add Comment

摘要 波兰雅盖隆大学等,用两个芳基偶氮吡唑配体合成了光敏顺铂类似物,能够进行反式-顺式/顺式-反式光异构化。顺式光异构体的半衰期为9天。作者在几种癌症和正常细胞系中,测定了复合物的两种光异构体的细胞毒性,并与顺铂的细胞毒性进行了比较。该复合物的反式光异构体,比顺式光异构物和顺铂更具细胞毒性,对癌症(4T1)的毒性比对正常(NMuMG)小鼠乳腺细胞的毒性更大。4T1细胞通过坏死死亡。4T1细胞内化的反式和顺式光异构体的光异构化分别增加和降低了它们的存活率。反式光异构体的细胞摄取强于顺式光异构物和顺铂。这两种光异构体与DNA的相互作用比顺铂更快。反式光异构体与牛血清白蛋白的结合更强,诱导细胞谷胱甘肽水平的降低幅度大于顺式光异构物。 参考文献 Light-Controlled Anticancer Activity and Cellular Uptake of a Photoswitchable Cisplatin Analogue, J. Med. Chem. 2024, DOI: 10.1021/acs.jmedchem.4c01575

苯基邻位连接供-受体的苯并噻唑基二氟化硼化合物空间调控,用于OLED的TADF发光材料(ACS Appl. Mater 2024)

Posted · Add Comment

摘要 乌克兰利沃夫国立理工大学设计、合成了两种咔唑电子供体、苯并噻唑稠合硼杂环受体,通过苯邻位连接的染料,并对其进行了光谱研究。由于硼杂环单元的空间效应,染料在晶态时表现出不同的构象。分子间大量氢键作用、分子堆积中非常弱的π-π堆积,导致强烈的固态发光,晶体的光致发光量子产率分别为40%和18%,基于主体的发光层的光致荧光量子产率为50%和42%。 这些化合物显示出聚集诱导发光和热激活延迟荧光(TADF)。电离势(IP)和电子亲和势(EA)值表明,所开发的染料具有良好的电荷注入能力和双极电荷传输性能。通过渡越时间测量,检测了染料层中的空穴和电子的传输。苯并噻唑基二氟化硼配合物在1.35 × 106 V cm-1 的电场下显示出1.5×10-4 和 0.7×10-4 cm2 V-1 s-1 的高电子迁移率。因此这些染料用作有OLED的发射体是非常成功的,其外部量子效率分别为 15% 和 13%。我们的研究标志着固态发射二氟化硼染料领域的一个关键进展,该染料可以作为 TADF 发射器应用于OLED。所得结果表明,苯邻位连接供体-受体染料中,受体单元的取向对 TADF 活性有显著影响。 其中逆向系间窜跃速率、自旋轨道耦合矩阵元,采用AMS软件中ADF模块计算得到。 参考文献 Sterically Tuned Ortho-Phenylene-Linked Donor–Acceptor Benzothiazole-Based Boron Difluoride Complexes as Thermally-Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes, ACS Appl. Mater. Interfaces 2024, DOI: 10.1021/acsami.4c12662

添加2,5-二甲基呋喃对正庚烷/异辛烷的碳烟纳米结构演变分析:实验研究与ReaxFF MD模拟(Combust. Flame 2024)

Posted · Add Comment

研究背景 生物燃料作为一种可再生能源,其性质与普通汽油和柴油非常相似。呋喃类生物燃料作为最具代表性的第二代生物燃料具有众多优点,如生产原料主要为纤维素而非粮食以及油料作物,不会与国家粮食保障的规定形成矛盾,并且此类生物燃料与石油的能量密度相当,这样将其与石油燃料混合不会引起发动机性能结构的重大改变。2,5-二甲基呋喃 (DMF) 是一种典型的呋喃类生物燃料,具有许多优点:能量密度与汽油相似、高沸点以及不溶于水等。基于此,本文主要进行DMF对正庚烷/异辛烷的碳烟纳米结构演变研究。 研究方法 结合层流扩散燃烧实验,本文采用 AMS 软件中 ReaxFF MD方法模拟研究了2,5-二甲基呋喃掺混对正庚烷/异辛烷的碳烟纳米结构演变。 成果简介 研究表明,随DMF掺混比的增加,正庚烷/异辛烷的层流扩散火焰高度逐渐升高。在高度一致的情况下,采集到的初级碳烟颗粒数量先减小后增加;初级碳烟颗粒的尺寸也随着DMF掺杂比的增大先增大后减小。透射电子显微镜(TEM)分析表明,DMF最初抑制了正庚烷/异辛烷火焰中初级碳烟颗粒产生,随后又促进了其生长。随着DMF掺混比的增加,核壳比先增大后减小,这表明碳烟的成熟度先减小后增大。在ReaxFF MD模拟中,掺混了DMF的正庚烷/异辛烷热解过程分为:燃料在第一阶段分解,在第二阶段发生剧烈反应。碳烟前驱体持续发生反应,分子尺寸不断增大,多环芳烃(PAHs)持续增加。第三阶段,最大分子的含碳原子数缓慢增加,碳烟发展进入成熟阶段,H/C比值缓慢下降。通过ReaxFF MD模拟发现,随着DMF掺混比的增加,碳烟的成熟度呈现先减小后增大的趋势。类石墨烯结构主要集中在H/C比为0.297的区域。 图文导读 图1 图形摘要 图2 最大分子特性和最终产物生成分析: (a)在4.5 ns下最大分子的结构; (b) 在不同DMF掺混比下,在4.5 ns时最大分子的碳原子数和H/C比; (c)在4.5 ns下H2、CO和C2H2的百分比 图3 在2.7 ns时碳烟的结构图 参考文献 W. Dong, R. Hong, Y. Yang, D. Wang, B. Qiu, H. Chu. Analysis of the nanostructure evolution of soot in n-heptane/iso-octane with 2,5-dimethylfuran addition: A combined experimental study and ReaxFF MD […]

【重庆大学李海涛教授】无机磷酸铵盐抑制甲烷/煤尘混合爆炸的反应行为和机理:ReaxFF MD 结合 DFT 研究(Chem. Eng. J 2024)

Posted · Add Comment

研究背景 无机磷酸铵盐粉体由于其优良的抑爆性能长期以来被人们广泛关注,其对瓦斯煤尘复合爆炸的有效性已经在众多实验及工程现场得到充分验证,主要通过定性定量分析无机磷酸铵盐粉体如 NH4H2PO4、(NH4)2HPO4 等对瓦斯煤尘复合爆炸压力演化、火焰传播等宏观特征的影响,然而无机磷酸铵盐粉体抑爆剂抑制瓦斯/煤尘复合爆炸的详细反应过程及其微观作用机理尚未了解。 研究方法 为了揭示无机磷酸铵盐粉体抑爆剂抑制瓦斯/煤尘复合爆炸的详细反应过程及其微观特征,研究团队采用反应力场分子动力学(ReaxFF-MD)与密度泛函理论(DFT)相结合的数值模拟方法对无机磷酸铵盐在抑制瓦斯煤尘混合爆炸反应中的分子动态演变过程及潜在反应机理进行了深入的研究。本研究为无机磷酸铵盐粉体抑制爆炸的反应进程提供了更多见解,有助于开发设计高效的抑爆剂。 图1 NH4H2PO4 及 (NH4)2HPO4 抑制瓦斯煤尘复合爆炸反应路径及作用机理 主要研究结论 相同质量分数的NH4H2PO4对CO2的抑制作用更显著,(NH4)2HPO4则生成更多H2O,在反应过程中无机磷酸铵盐抑制剂不仅对复合爆炸过程中CH4的初始反应步骤产生影响,同时吸收爆炸反应进程中的活性自由基(H/O/OH)及中间产物(CH3/CH2O)以阻抑链反应的继续发展。其中,NH4H2PO4主要通过HPO3→PO2→PO→HPO2→HPO3循环反应路径进行抑制,而(NH4)2HPO4在此基础上增加了H2PO4→H3PO4→H2PO3→H2PO4、HPO3→HPO2→H2PO3→H2PO4→HPO3两条循环反应路径。此外,NH4H2PO4的加入使C40+的分解速度下降35.3%,(NH4)2HPO4的加入使C40+的分解速度下降47.2%。同时,由于无机磷酸铵盐团聚效应及吸水效应,模拟过程中抑制剂的最佳抑制浓度表现为1:1。该浓度下,抑制剂的加入不仅延迟了复合爆炸过程中脂肪键、醚氧桥键断键的时间即煤分子分解时间,同时延迟了煤分子开环反应的时间即煤分子氧化时间。随着抑制剂质量分数的增加,其更易吸附大量水分子及含磷化合物,使原本开环反应后的物质重新连接而形成新的大分子基团,以阻抑反应的下一步氧化分解。 参考文献 Reactive behaviors and mechanism of methane/coal dust hybrid explosions inhibited by NH4H2PO4 and (NH4) 2HPO4: A combined ReaxFF-MD and DFT study, Chemical Engineering Journal, 2024, DOI: 10.1016/j.cej.2024.155577

极端条件下运行的锂金属电池的合理电解质设计(Journal of Materials Chemistry A, 2024)

Posted · Add Comment

摘要 开发能够在极端条件下运行的锂金属电池电解质是一项重大挑战,并且往往因缺乏系统的溶剂筛选研究而受到阻碍。在这项研究中,通过 DFT 和 COSMO-RS 计算,来评估包含20种溶剂的190种二元混合物,以识别具有宽液体温度范围和高LiTFSI溶解度的电解质。四亚甲基砜(TMS)因其高沸点和低熔融焓而成为一种有前景的候选者,这会提高混合物中的泡点并降低共晶温度。利用具有七个σ描述符的机器学习模型,精确预测了Li和TFSI离子结合能。这些结合能主要受到强静电和范德华相互作用的影响。这种综合方法突出了DFT、COSMO-RS和机器学习技术相结合在指导电解质设计方面的有效性。 参考文献 Rational electrolyte design for Li-metal batteries operated under extreme conditions: a combined DFT, COSMO-RS, and machine learning study, J. Mater. Chem. A, 2024, 12, 15792

从分子层面理解使用深共晶溶剂从酚类化合物中分离中性油(Sep Purif Technol, 2025)

Posted · Add Comment

目前从煤直接液化油中,分离酚类化合物的过程,需要解决产生含酚废水,以及产品中中性油含量不达标的紧迫问题。北京化工大学与太原师范大学合作研究中,使用 AMS 软件中的 COSMO-SAC 模型来预测深共晶溶剂(DES)对酚类化合物的分离性能,并根据固液相图确定了潜在的萃取剂及其液相操作窗口。

采用低成本、稳定、高效的萃取剂 LC:TEG(1:3.3)DES 进行实验,探索实验条件的影响。通过量子化学和分子动力学模拟的可视化方法,探索了结构-活性关系,提出了一种多级闪蒸联合蒸馏去除中性油的方法。建立了萃取与蒸馏相结合的工艺,得到中性油含量仅为0.31%的间甲酚产品,中性油含量首次降至1%以下,满足工业要求。

通过 COSMO-RS 预测药物与聚合物的相容性

Posted · Add Comment

最近捷克共和国布拉格化工大学Michal Fulem课题组,使用 AMS 软件的 COSMO-RS 模块预测 10 种活性药物成分(API)与聚合物聚乙烯吡咯烷酮(PVP)K12 的固液平衡(SLE)曲线。作者采用两种基于 COSMO RS 的方法,即“传统方法”和“快速方法”,并对二者的性能进行了比较。通过逐步溶解(S-WD)方法获得的各自 SLE 数据集进行比较,评估预测 SLE 曲线的准确性。

【重庆大学李海涛教授】DME/NH3 混合物燃烧机理:ReaxFF MD 与 DFT 结合的研究(Int J Hydrogen Energ, 2024)

Posted · Add Comment

研究背景 氨燃料作为一种清洁能源具有广阔的应用前景,但其在实际应用中存在着燃烧速度慢、点火困难等问题。为提高氨的燃烧效率,研究人员提出通过加入二甲醚(DME)等反应性较强的组分来改善其燃烧特性。DME作为一种高质量的清洁能源,具有较高的热值和绝热燃烧温度,能够显著提高氨的反应活性,同时还能够有效减少NOx排放。这一研究的重点是通过先进的分子动力学模拟和密度泛函理论(DFT)方法,深入探讨DME/NH3混合燃料的燃烧机制,为未来绿色能源的开发提供理论依据。 研究方法 为揭示DME/NH3混合燃料在燃烧过程中的反应路径和化学机制,研究团队采用反应力场分子动力学(ReaxFF-MD)与密度泛函理论(DFT)相结合的数值模拟方法。ReaxFF-MD能够在原子尺度上模拟复杂的化学反应,为我们呈现分子之间的相互作用和化学键的演变过程。与此同时,DFT方法则用于计算分子反应的能垒、键解离能及反应位点。这种方法的结合不仅能够精确模拟燃烧过程中的微观机制,还能为实验结果提供有力的理论支持。 图1 DME/NH3 分子动力学模拟系统及分子结构示意图 主要研究结论 通过对DME/NH3混合燃料的深入研究,研究团队为理解这种混合燃料的燃烧机制提供了新的视角: ① 温度对燃烧过程的影响: 研究发现,随着系统温度的增加,燃烧反应的速率显著加快,氧气的消耗量也随之增加。这表明温度的提升能够显著增强燃烧反应的活跃度。此外,在各种温度条件下,氨分子总是先于二甲醚分子被完全消耗。温度越高,二甲醚的消耗速度越快。 ② 主要产物生成规律: 随着温度的升高,二氧化碳和水的生成量显著增加。氮元素在燃烧过程中主要形成氮气(N2)、一氧化氮(NO)和二氧化氮(NO2)等产物。随着温度的升高,氮气的生成量减少,而NO和NO2的生成量增加。这表明温度升高有助于NOx的生成。 ③ 化学键的演变: 研究通过分析燃烧过程中化学键的变化,发现C-H、C-O和N-H键在反应过程中逐渐减少。随着温度的升高,C-H键完全消耗的时间显著缩短。N-H键的数量在反应过程中没有完全消失,部分以中间产物的形式存在。这表明在燃烧过程中,一些中间产物较为稳定,尤其是在较低温度下。 ④ 初始反应路径分析: 二甲醚(DME)的初始反应路径主要以裂解反应为主,生成甲氧基(CH3O)和甲基(CH3)自由基。这一反应占据了所有初始反应中的49.06%,表明其在燃烧反应中占据主导地位。对于氨分子(NH3),初始反应路径则以氧化反应为主,生成H2O2和HO2等产物。这表明氨的燃烧主要通过氧化反应进行。 图2 二甲醚分子的初始反应路径和反应频率 图3 氨分子的初始反应路径和反应频率 ⑤ NOx排放的反应机制: 研究还发现,自由基(如羟基)在NOx的生成过程中扮演了重要角色。具体而言,羟基通过与HNO和HNO2分子的反应生成NO和NO2。这一反应途径在所有NOx相关反应中占据主导地位,尤其是NO的生成反应发生频率高达183次。 参考文献 Atomic insights into the combustion mechanism of DME/NH3 mixtures: A combined ReaxFF-MD and DFT study, International Journal of Hydrogen Energy, Volume 80, 28 August 2024, Pages 743-753 感谢重庆大学李海涛教授供稿,ReaxFF 分子动力学模拟采用 […]

清华大学胡憾石、李隽课题组Inorg. Chem. |理论研究揭示二维富勒烯单层的电子结构和化学键

Posted · Add Comment

AdNDP轨道、超原子分子轨道(SAMOs)和NOCV轨道作用揭示二维富勒烯单层的电子结构和稳定性 研究背景 自从富勒烯C60被合成以来,富勒烯及其衍生物展现出令人瞩目的化学和物理性质。富勒烯是一种具有Ih对称性的二十面体结构,由20个六边形和12个五边形组成。这种独特的几何结构使它们与传统的纯碳材料如二维的石墨烯和三维的金刚石等材料截然不同。除了单个富勒烯分子外,以C60富勒烯为基本结构单元组装而成的各种碳材料也相继被合成。由于富勒烯封闭的笼状二十面体结构,富勒烯分子也具有很高的稳定性。所以在富勒烯材料中,C60分子之间难以形成强的化学键,主要依靠分子间的范德华(van der Waals)相互作用。例如,面心立方富勒烯晶体(fcc C60)已在室温下被合成,C60质心之间的距离为10.02 Å,其主要作用力为较弱的范德华力。 近年来,具有分子间化学键的富勒烯材料也被科学家们陆续发现。例如,通过[2 + 2]环加成键连接的六方相富勒烯(rhombohedral phase),以及在高温高压下合成的四方相富勒烯(tetragonal phase)等富勒烯固体材料。此外,研究表明,碱金属和碱土金属掺杂可以促进C60聚合物晶体的形成。这些掺杂的富勒烯聚合物展现出丰富的电子性能,有的甚至表现出超导现象。 最近,中科院化学所郑健课题组通过有机阳离子切片策略成功合成了二维单层准六方相富勒烯(qHPC60)和单层准四方相富勒烯(qTPC60)。在二维六方相富勒烯单层中,每个富勒烯被6个相邻的富勒烯碳笼包围,碳笼之间通过碳-碳单键和[2+2]环加成键连接。这种单层富勒烯聚合物的带隙为1.6 eV,具有优异的热力学稳定性,同时表现出优异的光学各向异性、机械性能和热电特性等。此后,关于二维富勒烯材料的实验和理论研究陆续大量报道,但对于这种材料的电子结构与其稳定性的深入探究仍有待进一步明确。 论文详情 清华大学化学系胡憾石、李隽团队采用密度泛函理论方法,通过研究二维富勒烯单层的电子结构和化学键来探讨其稳定性机制。理论计算表明,二维富勒烯单层具有1.46 eV 的直接电子带隙,与实验值(1.6 eV)吻合。研究发现,富勒烯分子间碳-碳键的形成对促进C60之间的电荷流动起着关键作用,使得 C60球内形成双重π芳香性,从而稳定了二维骨架结构。此外,研究还发现二维富勒烯单层内一系列离域的超原子分子轨道(SAMO)。这些轨道表现出类似原子轨道的行为,并杂化形成具有σ/π成键和σ*/π*反键性质的近自由电子带。本研究为理解二维富勒烯单层的电子结构和稳定机制提供了新的见解,对基于SAMO的近自由电子带的二维富勒烯材料的设计和潜在应用提供了理论指导。 该研究成果以“Understanding the Electronic Structure and Chemical Bonding in the 2D Fullerene Monolayer”为题,发表于Inorganic Chemistry期刊。南方科技大学博士后赵晓昆为本文第一作者,清华大学化学系胡憾石和李隽为本文通讯作者。 研究内容 1,二维富勒烯材料的结构和稳定性探究 Figure 1.二维富勒烯材料的结构,(a)俯视图;(b)侧视图。C1,C1′和C2分别代表[2+2]环加成键中的碳原子;C3和C3′分别代表分子间碳-碳单键中的碳原子。 在二维富勒烯材料中,由于C60分子间碳-碳键的形成,导致其内部的C60分子结构发生了扭曲,从Ih对称性降低到了C2h对称性。同时,C60分子内的“56”键和“66”键长的范围分别为1.377-1.610 Å和1.358-1.505 Å;而在原始的C60分子中“56”键和“66”键长分别为1.452和1.397 Å。此外,C60分子间[2+2]环加成键(C1-C1′)和碳碳单键(C3-C3′)的长度均为1.606 Å。对该二维富勒烯材料内部的碳-碳键强度的分析表明,分子间碳-碳键的强度(~ -7.9 eV)要明显小于C60分子内部的碳-碳键强(> -11.2 eV)。对不同温度下(分别为600 K、1000 K、1400 K和1800 K)下时长30 ps 的AIMD模拟结果表明,该材料在1400 K以上仍具有良好的热力学稳定性。然而,在1800 K时,该材料在10 ps的AIMD模拟后会分解成单个的C60分子。 2,二维富勒烯材料的芳香性探究 […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •