无重元素的高效持久室温磷光分子(Advanced Materials 2020)

Posted · Add Comment

持久性(寿命>100 ms)室温磷光(p-RTP)对于最先进的生物成像应用非常重要。发色团与p-RTP相关的物理参数之间关系不明,这导致寻找产率超过50%和寿命超过1s的p-RTP非常困难。日本电气通信大学最近报道了在环境条件下,不含重元素发色团的高效、长寿命p-RTP。由长共轭氨基取代无重原子芳香核,显著加快了磷光发光速率,且与分子内振动的T1态无辐射跃迁无关。设计出的其中一个生色团在环境条件下的RTP产率为50%,寿命为1s。强激发下的余辉亮度至少是传统长余辉发光体的104倍。这表明,实现小规模、低成本、达到衍射极限尺寸的高分辨率门控发射的光电探测器是可能的。 文中通过ADF计算的旋轨耦合强度,详细研究了三重态-单重态间窜跃,以及激发态的辐射跃迁寿命等。 参考文献: Indranil Bhattacharjee, Shuzo Hirata,  Highly Efficient Persistent Room‐Temperature Phosphorescence from Heavy Atom‐Free Molecules Triggered by Hidden Long Phosphorescent Antenna, Advanced Materials, 2020, 2001348  

封面:有机硼功能化使多金属氧酸盐纳米胶囊的分级组装成为可能(Angew. Chem. 2020)

Posted · Add Comment

多金属氧酸盐简称多酸(polyoxometalates,POMs),是前过渡金属离子的高氧化态(Mo, W, V, Nb, Ta)与氧形成的纳米级簇类金属氧化物阴离子。功能化POMs 材料在医药、磁性材料、环境保护、催化、分子电子学、能源转化和储能材料等领域具有广阔的应用前景。 河南师范大学陈学年教授课课题组、南方科技大学郑智平教授和德国乌尔姆大学Carsten Streb教授,提出利用硼酸对POMs进行共价功能化的新机制,利用硼酸中硼原子的电子缺陷和亲电性以及POMs中金属氧基的亲核性和高电子密度,使用有机硼酸将Dawson阴离子[M3P2W15O62]9- (M = Nb, Ta)连接到POM基纳米结构,合成了直径约4nm的具有内腔和独特的高对称性结构的POM聚集体。     为了深入了解有机硼功能化POMs的形成机理,作者使用Amsterdam Modeling Suite(简称AMS)中ADF模块,进行了密度泛函计算研究,对POM的主要构造单元{M3W15}的电子结构进行了比较。为了合理解释五族金属对Mulliken电荷分布的影响,作者比较了{Ta3W15}、{Nb3W15}、{V3W15}。 三种物质显示出明显的Mulliken电荷分布趋势,以及端位(Ot)、桥位(Ob)氧基的Lewis碱度序列:O(Ta) > O(Nb) > O(V)。而在实验上,观察到Nb形成1-Nb、2-Nb与Ta形成1-Ta、2-Ta相比,PH值更低(二者分别为1.0~0.0、4.0~0.0)。而{V3W15}即使在低PH值下,对各种硼酸都没有反应性。正是碱度/亲核性促进了M-O-B的连接,最终形成四聚、十二聚的分子胶囊结构。 该论文被编辑部评为VIP论文 (Very Important Paper),又被选为封面文章,发表后被Chemistry Views做亮点介绍。 Shujun Li, Yanfang Zhou, Nana Ma, Jie Zhang, Zhiping Zheng,* Carsten Streb,* and Xuenian Chen*, Organoboron-Functionalization Enables the Hierarchical Assembly of Giant Polyoxometalate Nanocapsules, Angew. Chem. Int. Ed. […]

使用巨正则系综反应力场模拟铂电催化剂的氧化与失活(Small 2019, Angew. 2017)

Posted · Add Comment

铂基纳米颗粒电催化剂是目前应用领域最广的氧还原催化剂,在金属-空气电池,等离子体催化,以及质子交换膜燃料电池等领域均有应用。由于贵金属成本高昂,燃料电池要得到广泛应用,就必须优化这些贵金属材料的使用效率。目前最主要的努力方向,是增大阴极氧还原反应活性,以及通过最大限度地减少失活、减少Pt负载提高寿命。与非铂族金属形成合金,或者通过改变催化剂纳米粒子形状,裸露不同类型的表面、边缘、扭结以及其他低配位位点,从而控制反应活性和选择性,都非常有效。 在这些研究中,计算模拟扮演了非常重要的角色。冰岛大学(UI)Donato Fantauzzi课题组与德国卡尔斯鲁厄理工学院(KIT)Timo Jacob课题组,通过理论模拟与实验结合研究表明,近环境压力下单晶Pt(111)面上确实存在稳定的表面氧化物,并且对其电催化行为有潜在的影响。Seriani等人通过DFT计算表明,数层Pt3O4在Pt(100)表面具有热力学稳定性,并对甲烷再离解具有催化活性。深入研究表面氧化物对催化的影响,对提高材料催化活性意义重大。 Donato Fantauzzi课题组与Timo Jacob课题组使用了巨正则系综(GCMC)与反应力场(ReaxFF)相结合的方式,研究了铂纳米粒子的氧化。模拟模型为2~4nm的立方颗粒,该尺寸与燃料电池中实际使用的尺寸相当。尺寸过大,计算成本也会更大,尺寸过小可能导致该力场有效性得不到保证(原因详见原文)。通过两相热化学(2PT)方法得到显式溶剂化和热化学贡献,确定了热力学上最稳定的氧化物结构,进一步得到了更精确的能量数据,并使用扩展从头算热力学(EAITD)构建了电位相关相图。 结果表明,铂纳米颗粒的氧化始于纳米粒子的边缘和顶点,(111)面表现出令人惊讶的抗氧化能力。与标准氢电极(SHE)相比,在0.8~1.1 V之间(与典型燃料电池环境一致),表面氧化结构是稳定的。这表明,干净的金属表面可能不适合作为铂氧化催化剂的模型体系。完全氧化后,纳米颗粒裂开成Pt6O8单元。DFT计算发现这些[Pt6O8]4-具有高稳定性、亲水性。因此认为[Pt6O8]4-承担了燃料电池中离子铂的输运,从而对燃料电池催化剂失活扮演了重要角色。 文献: Growth of Stable Surface Oxides on Pt(111) at Near‐Ambient Pressures, Dr. Donato Fantauzzi Sandra Krick Calderón Dr. Jonathan E. Mueller Mathias Grabau Dr. Christian Papp Prof. Dr. Hans‐Peter Steinrück Dr. Thomas P. Senftle Prof. Dr. Adri C. T. van Duin Prof. Dr. Timo Jacob, Angew. Chem. Int. Ed., 2017, 56, 2594 […]

DNA结合剂的新用途-氢键有机半导体(Nat. Comm. 2019)

Posted · Add Comment

有机半导体通常是多环芳烃或杂原子取代的多环芳烃组成。有机电子学中,生物启发材料领域,生物分子表现出新的电荷输运机制和特定的分子识别机制。伊利诺斯大学香槟分校Ying Diao课题组发现脱氧核糖核酸拓扑异构酶抑制剂得到的有机半导体材料,与普通有机半导体不同,它具有氢键修饰的共轭骨架。 作者以玫瑰树碱为模型进行了研究,发现氢键不仅诱导多晶组装,而且对形成沿π共轭平面的有效电荷传输路径也至关重要。在π−π堆叠和氢键方向,微波传导法测得的本征短程空穴迁移率高达6.5 cm2V−1s−1和4.2 cm2V−1s−1,在场效应晶体管中测得的长程表观空穴迁移率可达1.3 × 10-3 cm2V−1s−1和0.4 × 10-3 cm2V−1s−1。 本文中,ADF被用于计算转移积分等计算,用于Marcus–Levich–Jortner理论研究载流子迁移率。 文献: Fengjiao Zhang, Vincent Lemaur, Wookjin Choi, Prapti Kafle, Shu Seki, Jérôme Cornil, David Beljonne & Ying Diao, Repurposing DNA-binding agents as H-bonded organic semiconductors, Nature Communications, volume 10, Article number: 4217 (2019) 

碳量子点氨基官能化光致发光机理研究(J PHYS CHEM LETT, 2019)

Posted · Add Comment

具有亮红色光致发光(PL)的碳量子点显著拓宽了它们在生物和光电子领域的应用,悉尼大学Evgeny V. Kundelev与香港城市大学Andrey L. Rogach课题组,提出理论模型成功预测碳量子点的氨基官能化不仅让红光偏移到更长波长,而且能够保持碳量子点基础辐射跃迁较强的振子强度。该模型考虑了氨基官能化碳量子点的光学相应,而这是由类似分子的稠环芳烃子亚单元决定的,其中有1~3个氨基修饰于碳量子点表面。 这些亚单位的激发态的具有鲜明特征:氨基和碳量子点的碳芯之间的强电荷分离。这导致了碳量子点光发射的斯托克斯位移。碳量子点表面的氨基数量越大,斯托克斯位移越强。该理论模型解释了实验观察了碳量子点光致发光对激发波长的依赖性。 所有理论计算使用AMS种ADF模块完成,溶剂化效应对发光的影响,使用COSMO溶剂化模型考虑。 Evgeny V. Kundelev, Nikita V. Tepliakov, Mikhail Yu. Leonov,Vladimir G. Maslov, Alexander V. Baranov, Anatoly V. Fedorov, Ivan D. Rukhlenko, Andrey L. Rogach,  Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement, J. Phys. Chem. Lett. 2019, 10, 17, 5111-5116

表面等离激元促使温和条件下纯水固氮(JACS, 2019)

Posted · Add Comment

模拟自然中的固氮环境(相似的环境压力、室温、纯水和入射光)能对未来氮转化提供有效途径。N≡N键的热裂解能非常高,在温和条件下,氮的还原通常经历缔合交替或远端途径,而非通过解离机制。中国科技大学熊宇杰课题组报道,在水与光照条件下,表面等离激元能够为N2解离提供足够的活化能,并通过原位同步辐射的红外光谱和近环境压强下X射线光电子能谱得到证实。 理论模拟表明,表面等离子体增强对电场的增强,以及等离子体热电子、界面杂交可能在N≡N解离中起重要作用。尤其是AuRu芯-天线纳米结构的活性位点以及更宽的光吸附截面,导致在室温和2 atm压力下,在没有任何牺牲试剂的情况下,达到了101.4 μmol/(g·h)的氨生成速率。本项研究成果突出了表面等离激元对惰性分子活化的意义,为开发新型催化体系提供了一个有前景的平台。 结构优化计算采用BP86泛函以及DZP大冻芯基组,并使用ZORA标量相对论方法考虑相对论效应的影响。计算电子密度空间分布时,采用BP86/TZP,并使用Unrestricted方法处理开壳层体系(即α与β电子不完全配对体系)。所有计算使用ADF完成。 Canyu HuXing ChenJianbo JinYong HanShuangming ChenHuanxin JuJun CaiYunrui QiuChao GaoChengming WangZeming QiRan Long*Li SongZhi LiuYujie Xiong*, Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions, J. Am. Chem. Soc.2019, 141,19, 7807-7814

混合沉积法制备二维有机半导体提升场效应晶体管载流子迁移率(Advanced Science, 2019)

Posted · Add Comment

溶液处理的二维有机半导体在光电子、生物传感器方面的应用,是近年的研究热点。但是制备分子取向规则、缺陷密度低的二维有机晶体薄膜仍然面临挑战。香港大学冯宪平课题组与新墨西哥州立大学Paddy Kwok Leung Chan课题组使用超慢剪切法(Ultraslow Shearing Method)制备出高度结晶的C10-DNTT单层晶体。通过表面能计算,证实其动力学Wulff构造生长模式。   得到的无缝、高度结晶单层作为模板,在上面热沉积另一个超薄C10-DNTT结晶单层,这种方式制备的薄膜,其分子取向完全复制了模板的取向。C10-DNTT制备的有机场效应晶体管载流子迁移率可以达到14.7 cm2/V·s,而纯粹的热蒸发法只能达到7.3 cm2/V·s,溶液剪切法为2.8 cm2/V·s。这种简单有效的方法,可能用于大规模制备高性能、低成本电子产品。 载流子迁移率的计算,采用AMS软件中的ADF模块,通过转移积分的计算得到。 Zhiwen Zhou, Qisheng Wu, Sijia Wang, Yu-Ting Huang, Hua Guo, Shien-Ping Feng,* and Paddy Kwok Leung Chan*, Field-Effect Transistors Based on 2D Organic Semiconductors Developed by a Hybrid Deposition Method, Adv. Sci. 2019, 1900775

ADF Highlight:卤键在超分子动力学过程中的催化作用(Nature Comm.,2019)

Posted · Add Comment

文献资料:Patrick M. J. Szell, Scott Zablotny & David L. Bryce, Halogen bonding as a supramolecular dynamics catalyst, Nature Communications volume 10, Article number: 916 (2019) 动力学过程对催化剂、酶、主-客复合物、分子机器等功能分子有重要影响。本文通过氘核磁共振弛豫实验,展示了2,3,5,6-四甲基吡嗪共晶中,卤键对甲基转动的催化作用。作者观察到,与纯的2,3,5,6-四甲基吡嗪共晶相比,卤键共晶中,甲基转动的活化能垒平均下降了56%,氢键共晶下降了36%。 密度泛函计算的结果表明,对位交叉构象不稳定,邻位交叉构象却非常稳定,共同降低了能垒,导致了卤键超强的催化作用。此外,计算结果还表明,卤键的催化能力可能是可调的,卤键供体作用越强,催化作用越强。 本文DFT计算使用AMS中的ADF模块完成,分子模型从晶体结构中提取。因为存在分子间弱相互作用,因此使用Grimme3 BJDAMP色散修正泛函(即-D3(BJ)类泛函),使用ZORA方法考虑相对论效应对重元素的影响。甲基转动过程,使用其中Linear Transit功能完成,每一步转动2.5°。

ADF Highlight:有机/无机配体协同保护的银纳米团簇(JACS, 2019)

Posted · Add Comment

文献资料:shan-shan zhang, Fahri Alkan, Hai-Feng Su, Christine M. Aikens, Chen-Ho Tung, and Di Sun, [Ag48(C≡CtBu)20(CrO4)7]: An Atomically Precise Silver Nanocluster Co-Protected by Inorganic and Organic Ligands, J. Am. Chem. Soc. 2019, 141, 10, 4460–4467 配体的精细选择对合成金属纳米团簇,具有重要意义。使用硫醇、炔基、膦或它们的组合,作为保护金属纳米团簇的配体,是最为广泛的。而无机氧阴离子在这一领域几乎被忽视。本文作者合成了第一个CrO42-/tBuC≡C-共配的Ag48纳米团簇(SD/Ag48,SD=SunDi),并用单晶X射线衍射(SCXRD)对其结构进行了表征。 SD/Ag48的伪五重对称金属骨架呈核壳结构,由外部Ag25壳包围Ag23圆筒组成。在SD/Ag48表面,前所未见地出现了无机(CrO42-)和有机(TBUC≡C-)配体共存的现象。无机CrO42-阴离子在银纳米团簇的构建中起着重要的作用:(1)钝化Ag23内核;(2)连接核与壳;(3)保护Ag25壳层。该纳米团簇属于14电子超原子体系,从可见区到紫外区呈现连续的类分子吸收带。本工作不仅为银纳米团簇的合成提供了一种新的配体策略,而且也为研究CrO42-对纳米银团簇形状的控制提供了新的思路。 本文使用ADF计算了该结构的电子结构,以及紫外可见吸收光谱。使用ZORA方法中的标量相对论方法考虑相对论效应的影响。

ADF Highlight:金属配体相互作用形成稳定“金富勒烯”(Angew.Chem. Int. Ed., 2019)

Posted · Add Comment

文献资料:Shang-Fu Yuan Cong-Qiao Xu Jun Li Quan-Ming Wang, Ligand‐Protected “Golden Fullerene”: the Dipyridylamido Au32 8+ Nanocluster, Angew.Chem. Int. Ed., 10.1002/anie.201901478 通过吡啶胺和三苯基膦作为保护剂,合成了“金富勒烯”Au32团簇。单晶X射线结构分析表明,该金纳米团簇[Au32(Ph3P)8(dpa)6](SbF 6)2(Hdpa=2,2′-二吡啶胺),具有S6群对称性,内核为Au328+。量子化学研究阐明了该簇结构的特殊稳定性源于金属-配体相互作用。 量子化学计算使用Amsterdam Modeling Suite(简称AMS)中的ADF模块完成。使用PBE泛函,为了节省计算量,Au元素使用TZP基组、所有其他元素都使用DZ基组,Au元素4f,P元素2P,C、N元素1s及其以内的电子冻结。一般而言,Au元素的相对论效应几乎是所有元素中最强烈的,相对论效应使用ZORA方法中的标量相对论(Scalar选项)。为了简化分子模型,计算使用PH3替代Ph3P。由于ADF中不包含S6群,因此使用其子群Ci群,优化之后得到的结构非常接近S6群。 本文也计算了原子电荷,包括Mulliken电荷布居、Hirshfeld、Voronoi以及多极导出电荷(MDC)。紫外-可见吸收谱使用LB94泛函计算得到,相对其他泛函,LB94具有较好的描述空轨道的能力。

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •