概述 锂离子电池因其高容量、高功率的优点,在储能领域发挥着至关重要的作用,广泛用于电动汽车和便携式电子产品等。电动汽车的快速发展要求高能量密度、高循环寿命和低成本,进一步改进制造工艺和电极设计仍然存在挑战。 在电极制造过程中,压延工艺是定制电极微观结构的关键步骤。在本研究中,使用离散元法(DEM)和粘结颗粒模型研究压延过程对电极微观结构的影响,对使用 X 射线计算机断层扫描(XCT)表征的真实电极结构和理想化 DEM 结构进行综合评估,计算分析基于断层扫描和 DEM 的电极结构及输运特性,即孔隙率分布、比表面积和曲折因子。在考虑碳粘合剂域(CBD)相之后,进一步分析电化学性质。 亮点 对基于高分辨率 XCT 表征和 DEM 的锂离子电池阴极结构进行评估在 Simpleware 软件中生成高质量的四面体网格,将网格模型导入 COMSOL 中进行仿真考虑不同的压延水平和 CBD 相,分析电化学性能 方法 图像处理 电极结构由 96 wt% LiNi0.6Mn0.2Co0.2O2(NMC622,BASF)、2 wt% C65 炭黑(Imerys)和 2 wt% PVDF(Solvay)配制,使用带有 MTI MSK-HRPMR100DC 压延设备的辊压机将干燥的电极压延两次。通过 XCT 对阴极结构进行表征,采用未压延结构和压延结构与 DEM 预测进行比较。使用基于机器学习的图像分析工具 Ilastik 预测扫描图像中不同相的体积分数,即 AM 颗粒相、CBD 相和宏孔相。 原始扫描图像(图a)经过过滤和二值化后获得 AM 颗粒相(图b),进行分割处理分离和标记单个 AM 颗粒(图c),并获得其各自的体积和坐标。在 DEM 模拟中,阴极结构内的颗粒近似为球形颗粒(图d)。 图1:AM 颗粒相的图像处理步骤 DEM […]