概述 柔性路面常用分析和设计方法的主要局限之一是缺乏适当的材料表征,即沥青混凝土(AC)的粘弹性、粘塑性、各向异性;颗粒材料的应力相关、各向异性;以及通过结构能力分析预测开裂导致的基底断裂响应和各种形式的破坏。AC 材料的应变响应会受到 AC 混合料微观结构特征的影响,如骨料的尺寸和分布、基体性能等。尽管实验和连续介质断裂模型可以通过计算断裂能、应力强度因子(SIF)或其他参数理解均质化响应,但并没有区分在裂纹尖端能够发挥显著作用的微观结构特征。 本研究使用微观力学有限元模型研究 AC 在半圆弯曲(SCB)断裂试验、伊利诺伊州柔韧性指数试验(I-FIT)过程中的行为;利用数字图像相关(DIC)技术计算的应变场及测量的全尺度应力对模型进行多步验证;建立微观力学模型评估骨料级配、骨料分布和空隙空间等微观结构特征对 AC 断裂行为的影响。 有限元模型 两个二维有限元模型(FEM):线弹性均质模型和粘弹性非均质微观力学模型,都通过平面应变有限元简化二维空间中的采样。 线弹性均质模型 遵循 AASHTO TP 124 在 ABAQUS 中表示荷载和几何形状。二维 I-FIT 模型如所示,直径为 150 mm,在中心处锯开一个长 15 mm、宽 1.5 mm 的缺口。采用平面应变假设,厚度为 50 mm。试件由两根相对于切口中心对称放置的无摩擦杆支撑,以 50 mm/min 的速率施加位移控制载荷。关于网格配置,缺口周围采用三角形平面应变单元,其余部分采用四边形单元。 图1:低密度聚乙烯(LDPE)试样(a)试验(b)FE模型 粘弹性非均质微观力学模型 对于粘弹性微观力学模型,由骨料和砂浆组成。假设骨料相为线弹性,弹性模量为 60 GPa;砂浆相定义为沥青结合料、空隙和过 2.36 mm 筛骨料的组合,设定为线性粘弹性。 采用两种方法定义 I-FIT 试样中的骨料分布:(1)基于实际 I-FIT 试样测试前获得的图像数据,导入 Simpleware 软件分割出不同的相;(2)基于 Python 脚本在 I-FIT 几何形状上创建随机骨料分布,与特定配料设计具有一致的骨料级配和体积比。 图2:骨料分布试样(a)DIC 和 […]