利用机器学习原子间势实现单层MoS2–WS2合金的热性能模拟【QuantumATK亮点文章】

Posted · Add Comment

背景

二维量子材料有望改变传统电子学,实现涵盖化学科学的广泛应用。为了研究单层(1L)或多层过渡金属二卤化物(TMD)中的热输运,作者探索了密度泛函理论(DFT)和训练算法的结合,生成了模拟 1L-MoS2、1L-WS2 及其合金(混合结构)的矩张量势(MTP)力场,并展示了理论技术的协同将在该领域发挥重要作用。从高性能计算的角度来看,所产生的非常方便的原子间势(或分子间势),可用于预测量子材料对热扰动或其他驱动力的响应。

研究内容

作者将数百个来自原子位置微扰和分子动力学轨迹的单层结构作为训练集用于 MTP 力场的训练,对比了用所得到的 MTP 力场计算的声子性质与 DFT 和 SW 力场计算的结果。训练得到的 MTP 力场很好的描述了体系的振动特性及其热导率。

图:多种方法得到的声子谱对比。
图:多种方法计算得到的特定声子振动模式频率随组分的变化。

作者将得到的 MTP 力场用于晶格声子热导率的计算,对比了非平衡分子动力学(NEMD)和非平衡格林函数(NEGF)两种方法的结果。

图:将 MTP 机器学习力场用于NEMD和NEGF方法的热导率计算。

结论

作者的结果表明,机器学习的 MTP 力场可以准确地再现原始和合金 1L TMD 的声子结构和热传输特性。1L-MoxW1-xS2 合金结构在不同浓度下具有独特的声子谱特征,但观察到的热传输特性对组分的依赖性非常低,这使得通过混合不同原子种类来设计类似材料的热传输特性成为可能。此外,2D 合金结构对硫空位不敏感,热导率几乎不受硫空位的影响,这一行为可能有助于微调材料的热性能,以用于热管理和能量存储和转换应用。这也提示我们可以不依赖于获得无缺陷晶体材料的昂贵技术来制造器件。最后,模拟精度在更大程度上取决于参考 DFT 方法和训练集,因此,对于实际模拟体系来说,可以不需要计算成本高、冗长的优化步骤,就能获得合理的结果。

参考


 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •