背景简介
自旋电子学是一种利用电子自旋及其相关特性的技术,旨在提高电子器件的性能和功能。传统的自旋电子器件使用铁磁材料作为自旋注入源,但这些材料通常具有相对较低的居里温度,限制了它们在高温环境下的应用。$\mathrm{Ga}_{2}\mathrm{O}_{3}$作为一种宽带隙半导体材料,近年来受到广泛关注,因其优良的电学和光学特性以及在高温条件下的稳定性。在磁隧道结中,电子的自旋极化能够显著提升器件的效率和性能。完美自旋过滤效应要求能够有效选择性地传输特定自旋方向的电子,这对于自旋阀和自旋转移扭矩等应用至关重要。研究人员尝试通过引入缺陷,以实现$\mathrm{Ga}_{2}\mathrm{O}_{3}$高居里温度和优异的自旋过滤性能,为未来自旋电子器件的发展提供新的材料平台。因此,该研究不仅为$\mathrm{Ga}_{2}\mathrm{O}_{3}$ 在自旋电子学中的应用提供了新的见解,也为开发高性能自旋器件开辟了新方向,具有重要的理论和应用价值。
研究内容
本文采用基于密度泛函理论的第一性原理方法研究了单层$\mathrm{Ga}_{2}\mathrm{O}_{3}$ 在Ga空位和O空位存在下的电子结构和磁性. 结果表明, $\mathrm{V}_{\mathrm{Ga}}$ 的引入会导致单层二维 $\mathrm{Ga}_{2}\mathrm{O}_{3}$ 中的非零磁矩, 而$\mathrm{V}_{\mathrm{O}}$ 不会。我们发现两种不同对称位置的Ga空位都能导致自旋极化基态。值得注意的是, 当$\mathrm{V}_{\mathrm{Ga}}$ 比大于1/16 (每16个Ga原子1个Ga空位)时, 单层2D $\mathrm{Ga}_{2}\mathrm{O}_{3}$ 表现出半金属性质, 并且其在费米能级处的自旋极化达到100%. 同时, 对这两种不同Ga空位体系的计算也表明了潜在的高居里温度(355.8 K)下的长程铁磁有序。最后利用具有高$\mathrm{V}_{\mathrm{GaI}}$ 比的单层 2D $\mathrm{Ga}_{2}\mathrm{O}_{3}$ 作为铁磁层, 可以获得在费米能级处具有超高自旋过滤效应的磁性隧道结。 Ga空位$\mathrm{Ga}_{2}\mathrm{O}_{3}$/MgO/Ga 空位 $\mathrm{Ga}_{2}\mathrm{O}_{3}$ MTJ 具有优异的自旋滤波效果(自旋极化100%)和巨大的TMR比(高达$1.12\times10^{3}%$)。本文的结果表明, 基于具有室温铁磁性的二 维 $\mathrm{Ga}_{2}\mathrm{O}_{3}$ 的 MTJ 表现出可靠的性能, 显示了在自旋电子学中应用潜在的可能性。
总结
作者利用密度泛函理论本文研究了原子空位对二维单层$\mathrm{Ga}_{2}\mathrm{O}_{3}$ 的电子和磁性能的影响,采用 Ga -空位单层二维$\mathrm{Ga}_{2}\mathrm{O}_{3}$(含Ga空位比为1/8)作为铁磁层构建了一个磁性隧道结,隧道结在费米能级处表现出非常高的自旋过滤效应和一个巨大的TMR(~ $1.12\times10^{3}%$),且可以实现近 100% 的自旋注入效率。综上所述,具有 Ga 空位缺陷的单层二维 $\mathrm{Ga}_{2}\mathrm{O}_{3}$ 自旋电子学具有广阔的应用前景。
参考
- High Curie temperature and perfect spin filtering effect in a single layer $\mathrm{Ga}_{2}\mathrm{O}_{3}$ magnetic tunnel junction[J]. Science China Materials, 2024: 1-10. DOI: https://doi.org/10.1007/s40843-024-3027-9。