概述 锂离子电池(LIB)因低成本、高比能量密度和使用寿命长而广泛应用于电动汽车、电网规模存储等。尽管如此,仍需进一步降低成本和延长寿命,同时提高功率密度。LIB 电极复杂的微观结构可以显著影响电池的性能,阴极包含(i)存储锂离子的活性材料(AM)颗粒相;(ii)促进电子传导和确保机械刚性的碳粘合剂域(CBD);(iii)由含锂离子电解质填充的连通、曲折孔隙(30 ~ 40vol %)。 CBD 通常位于 AM 颗粒的接触处,是由导电添加剂(如炭黑)和非导电聚合物粘合剂(如 PVDF)组成的复合材料,在整体电化学性能和容量衰减中发挥着关键作用。本项目提出了一种新的 CBD 相算法,通过数值模拟研究 CBD 网络变化对电池性能的影响。 实验和模拟 按照 NMC 622、C65 炭黑、PVDF 重量比为 96:2:2 制备用于 SEM 分析的电极,采用等离子发射聚焦氙离子束双束系统设备获取电极横截面和成像,由 Everhart-Thornley 探测器拍摄铸态和压延电极的二次电子图像。微米级大孔和亚微米级微孔 CBD 相分布在 AM 颗粒之间的孔隙空间中,形成导电网络。压延使结构致密化,导致大孔尺寸减小。 图:铸态和压延 NMC 622 阴极结构的 SEM 图像,蓝色为 CBD 相 使用 Altair EDEM 软件中的颗粒堆积算法生成具有不同 AM 颗粒体积分数 φPar 的压延电极结构,通过 MATLAB 编程采用阈值化随机场算法生成大孔相和微孔 CBD 相。在 Simpleware 软件中对生成的微观结构进行网格划分,包含约 350 万个线性四面体单元和 180 […]