概述 在当前可持续资源需求持续增长的背景下,植物纤维作为玻璃纤维等合成纤维的替代材料,近年来在市场上的能见度与占有率逐渐提升。在各类植物纤维中,亚麻纤维相较于玻璃纤维因其已通过生命周期评估证实的环境优势而备受关注。但在结构产品中的大规模应用仍受到多重因素的制约,植物纤维的自然特性在不同层面上引入了变异性,给更好地理解结构-力学性能关系带来了巨大挑战。 本研究基于 µCT 扫描图像数据创建亚麻纤维的微观结构模型,采用有限元方法模拟复杂纤维形态引起的局部应力和应变分布,探索形态特征对力学性能的影响。 图像处理和模拟 遵循标准 NF t 25-501 对 42 根单元纤维进行拉伸测试实验。使用 Zeiss Xradia 510 versa 设备进行扫描,获得 4 个单一亚麻纤维(a-d)的图像数据,体素尺寸为 150 nm。将 μCT 扫描图像数据导入 Simpleware 软件进行图像处理,由于亚麻纤维中不同亚层的 X 射线吸收特性相近且外部层状结构厚度极薄,无法通过 X 射线显微 CT 实现亚层区分。因此,在分析中将纤维简化为仅由形成较厚细胞壁的胶质层(G 层)构成。为进行对比,取纤维一端的横截面沿长度方向延伸(横截面无变化)记为 -NV;使用工具填充内部孔隙后的纤维分别记为 -F 和 -NV-F;构建直径为 15 μm 的圆柱形理想纤维(内腔占比为 1-10 %)记为 M。 在 Simpleware FE 模块生成高质量的四面体网格模型,为寻求计算时间和结果精度间的最佳平衡进行了收敛性测试。调整纤维 a 的网格粗糙度和体素尺寸,使自由度数量为 1.1 × 105 至6.3 × 106,平均单元体积为 5 × 103 至 325 × 103 µm3。通过整体刚度误差和应力分布曲线评估模拟结果的准确性。为精确表征纤维的孔隙率进而计算杨氏模量,同时保证具有足够的分辨率捕捉表面粗糙度和内腔复杂形状引起的应力集中,所有纤维均采用所测试的第三种网格粗糙度,模型尺寸的自由度介于 9 × […]