BAND并行效率非常高。对单胞约700原子(含42个Cu原子、24I原子、288个C原子、60个N原子)的MOF材料,K点取3*3*1,进行高精度能带计算,在16核服务器上耗时约44小时,128核耗时约6小时。
对于1000原子的1维体系,使用PBE泛函、7000个基函数、1个k点(由于体系很大,设置为1个k点是合适的),进行几何优化(CPU:4节点*16核),优化十步后几何结构收敛,耗时10小时。
主要功能:
- 三维(体材料)、二维(材料表面)、一维(聚合物、纳米管线等)、0维(分子)周期性体系的结构优化
-
相对论(自旋轨道耦合SOC)、全电子基组、冻心基组
-
泛函:meta-GGA、色散修正泛函,如:GGA-D3-BJ, GGA+U, HTBS, TB-mBJ, GLLB-sc (带隙计算更精确)
-
对二维表面的边界条件,正确处理垂直于表面的极化效应。表面的极化对催化效果有很大的影响,因为电荷的分布能够左右反应路径
-
一维、二维体系计算速度优于流行的平面波程序(因为不需要处理真空层带来的计算量)
-
一维、二维体系的表面溶剂化更合理
-
与平面波程序相比,更适合描述局域成键行为
-
含时流密度泛函(TDCDFT):计算薄膜半导体的介电常数
-
外加磁场、均匀静电场
-
物理性质:能带结构与态密度(pDOS、LDOS)、有效质量、费米能级、费米面、形成因子、动态极化率、介电函数、精确原子核电子密度、弹性张量及其相关性质(例如体积模量)、外加压力下的结构优化
-
光谱性质:吸收与折射光谱、EELS、NMR、EFG、Q-tensor、 ESR、g-tensor、A-tensor
-
化学分析:AIM、ELF、Mulliken、NMR、核电子密度、单电子激发、电子自旋共振、通过Laplacian电子密度与键关键点区分化学键类型、Crystal Orbital Overlap Populations (COOP)、Linear transit与势能面扫描(PES)、过渡态搜索
-
PEDA-NOCV成键分解:
-
表面吸附结构的成键分析(化学价自然轨道NOCV、能量分解EDA。下同)
-
分子的Unrestricted碎片成键分析:
-
- 声子谱与热力学性质计算
- DFT-1/2方法得到更好的带隙
- SM12溶剂化方法
-
高效并行化
-
图形界面易用性强:初学者也可以很快正确使用;
-
支持晶体结构数据库中cif文件导入
案例1:神经毒剂模拟物甲基对氧磷在光活性纳米织物上选择性可见光驱动毒性降解(Appl Catal B-Environ 2020)
巴西米纳斯吉拉斯联邦大学化学系、物理系、冶金与材料工程系、理工学院多个课题组联合研究,以聚己内酯(PCL)和固定化铌酸铁(NbOFe)纳米粒子为基底,采用静电纺丝技术制备了一种高效的光催化纳米织物(NbOFe-NF),并将其应用于高神经毒性化学战剂甲基对氧磷(MP)的光降解。其中光催化试验没有任何溶剂参与,仅仅依赖于织物、基底和可见光辐射。结果表明,光催化48小时,MP的转化率为94.5%。此外,还发现光活性纳米织物具有极强的选择性,可将MP及其原始有机磷产品转化为毒性较小的化合物。整个过程完全是光催化的,通过环境湿度产生H+和•OH自由基。

Applied Catalysis B: Environmental, 285, 15, 119774, 2020
理论研究中,使用AMS-BAND进行计算,电子轨道使用未收缩的STO基组TZ2P展开,该基组具有三重ζ,并为每个原子增加了两组极化函数,并使用ZORA方法考虑相对论效应。几何结构优化和能量计算GGA-OLYP获得,对MP在铌酸铁表面吸附的能量分布进行了计算研究。为了模拟非晶态结构,在材料结构中保留了与氢结合的氧原子。在AMS中建立了(001)表面的平板模型,并创建超胞,游离MP分子在相应的表面进行了结构优化,仅吸附于平板的一侧。BAND在二维、一维材料表面吸附计算的精度与效率,均高于平面波方法。
案例2:钯使聚氯乙烯工业更环保 (Applied Catalysis B: Environmental,2020)
聚氯乙烯是以氯乙烯单体为原料,通过自由基聚合反应合成的应用广、成本低、性能优异的聚合物。目前,活性炭负载HgCl2催化剂在工业乙炔加氢氯化制备氯乙烯中仍有应用,对用环境友好的无汞催化剂代替氯化汞催化剂,是绿色化学方向的迫切需求。为了寻找最佳钯催化剂替代,浙江工业大学工业催化研究所、环境学院与台州学院医药化工与材料工程学院联合研究,通过合成和分析从纳米颗粒、团簇到单原子位不同纳米结构的钯基催化剂,探索了负载型钯基催化剂用于乙炔氢氯化反应的活性位置和催化机理,如下图1 a所示:

图1 a,合成过程的示意图;b,不同钯位的催化性能。数据参考原始文献 Applied Catalysis B: Environmental, 272, 5 , 118944, 2020
研究表明,Pd单原子位点比Pd团簇(Pd/AC-R)或Pd纳米颗粒具有更高的活性和稳定性(图1c),吡啶氮有助于钯单原子位的催化活性(图1d)。采用密度泛函理论(DFT)和动力学分析相结合的方法,通过监测协同效应,进一步探讨了吡啶氮对提高催化活性的贡献。通过AMS-BAND进行DFT计算,清楚表明PdN2物种通过改善乙炔吸附,提高了催化效率(图2a)。在该位点,氯乙烯单体是由吸附在Pd位的C2H2与吸附在吡啶N位的HCl反应产生的,遵循Langmuir-Hinshelwood机理,Pd和吡啶N为双活性位(图2b)。

图2 a,C2H2在不同Pd位上的吸附模型和吸附能;b,吡啶氮上稳定的PdN2位反应机理的DFT计算。蓝色、灰色(载体)、红色、绿色、白色和棕色球分别代表N、C、Cl、H和Pd原子。
动力学研究表明,载体表面吡啶态N的大量存在促进了HCl在Pd周围的富集。这种富氯化氢策略,使得乙炔/氯化氢以1:1进料生产氯乙烯成为可能。
作者首次将钯单原子催化应用于乙炔加氢氯化反应,对化工行业具有重要的吸引力。值得一提的是,AMS中的BAND采用Slater基与数值基混合基组,非常擅长计算此类低维度体系,精度与效率均优于平面波方法。
案例3:高精度表面催化计算(Nature Comm.,2019)
近年来,由于天然气产量激增,化学原料需求向较轻的碳氢化合物,特别是甲烷转移。合成气(CO和H2)转化的效率,关键取决于催化剂对甲烷和二氧化碳产生的抑制能力。本文作者设计了一种Co/Mn/Na/S催化剂,该催化剂的水-气转换活性可以忽略不计,烃的产物谱也偏离了Anderson-Schulz-Flory分布。在240 °C和1 bar压强下,C2-C4烯烃选择性为54%。10 bar压强下,低碳烯烃和燃料的选择性分别为30%和59%。该催化剂由直径约10 nm的处于hcp金属相Co纳米颗粒组成。作者认为Na与S在Co表面作为电子促进剂,产生协同效应,从而提高了对低碳烯烃与燃料的选择性,同时也大大减少了甲烷和二氧化碳的生成。

Nature Communications, volume 10, Article number: 167 (2019)
文中使用AMS软件中的BAND模块计算了Na2S和Na2O在Co(0001)表面的成键结构。Na2O(图a)与Na2S(图b)在Co表面的结合方式非常相似。只不过O原子在一个亚表面钴原子上方,而S原子在一个空位上方。原包外的原子由较小的球表示,蓝色表示Co,橙色表示Na,黄色表示S,红色表示O。
案例4:表面成键分析(WIREs Comput. Mol. Sci., 2018)
化学键的概念,如共价键、离子性、泡利排斥、共享电子,或施主-受体键,是对我们丰富的化学知识进行归纳,以及预测新反应活性的重要工具。电子结构分析为理解这些概念的根源提供了基础。能量分解分析(EDA)是一种成熟的分子分析方法,最近在表面和固体中得到了应用,被称为周期性EDA(pEDA)。本文概述了该方法的基础和应用,该方法可用于推导成键的概念。在分子和固体化学中,用于研究分子与表面的吸附和反应(例如有机分子与半导体表面的相互作用)。基于电子结构分析和定量方法的支持,我们证明了类似键的概念可以应用在不同的化学环境中。
原文阅读:https://doi.org/10.1002/wcms.1401
案例5:化学键的视角分析能带成分(JACS,2018)
诺贝尔奖得主Roald Hoffmann是Amsterdam Modeling Suite(AMS)的忠实用户,Roald Hoffmann在本文中使用了AMS中的BAND模块的新功能Crystal Orbital Overlap Populations(COOP),结合基于对称性的成键分析,对卤化物钙钛矿的成键与能带特性进行了定性与定量计算分析,展示了金属-卤化物轨道相互作用如何产生能带的“镜像”现象、如何控制带隙,并展示了相对论效应对该体系能带结构与带隙的显著影响。

J. Am. Chem. Soc., 2018, 140 (40), pp 12996–13010
镜像是由Pb的6s与Br的4p组合产生的,它在布里渊区内移动的机理也得到清楚的阐释。阳离子替换为有机阳离子时,镜像现象仍然存在,即使晶格发生一定程度的扭曲也仍然存在这种现象。本文预测了当Pb2+替换为Sn2+或Ge2+,以及更换卤素,对能带的影响。本文也研究了最低的三个导带,发现了第二个镜像。对CsPbBr3而言该镜像由Pb的6p和Br的4p结合产生。
理解这些镜像的形成、在倒空间的移动,从而设置导带最低值,可以让我们看到为什么是直接带隙。BAND的轨道分析功能,为这类热门材料的能带工程提供了化学的、直观的图像。
案例6:硅表面醚分子开环反应与表面成键(Angew. Chem. Int. Ed., 2017)(Angew. Chem. Int. Ed., 2017)
通过计算化学研究表明,在超高真空条件下,醚分子在Si(001)表面的吸附可以用有机化学的经典概念来理解。两步反应机理的详细分析:1)醚的氧原子与Lewis酸性表面原子之间形成的配价键(DB);2)附近Lewis碱性表面原子的亲核攻击表明,它反映了溶液中酸催化的醚裂解。
O-Si键是这类键中最强的,并且第2步的反应活性违背了Bell-Evans-Polanyi原理。本文使用一种新的键分析方法(pEDA-NOCV),对C-O键解离过程中的电子重排进行了可视化的研究。

Angew. Chem. Int. Ed. 2017, 56, 15150 –15154
结果表明,半导体表面亲核取代的机理与Sn2分子反应的机理是一致的。我们的发现表明了表面科学和分子化学如何相互受益,并得到意想不到的洞察方式。
案例7:表面催化(ACS Catal,2016)
使用BAND进行高质量计算理论计算,合理解释了纳与硫这种特别的助催化剂组合:催化剂的活性相是铁的碳化物,其中碳参与了反应机理;硫原子与铁原子的结合很特别,不会阻挡碳原子,产生了次紧邻相互作用,从而将助催化剂的作用最大化。

ACS Catal. 6, 3147-3157 (2016)
BAND能够正确地处理表面的边界条件,因此能够体现助催化剂和/或衬底在垂直于表面的极化效应。表面的计划对催化效果有很大的影响,因为电荷的分布能够左右反应路径。
案例8:高精度表面弱吸附结构计算(Langmuir,2011)
使用BAND的色散修正泛函DFT (revPBE-D3)研究了真空中以及在二氧化硅沉底上的单层石墨烯上,水分子的吸附状态。虽然二氧化硅衬底没有影响石墨烯的电子结构,但将真空石墨烯上,水分子的结合能从207meV增大到257meV。二者吸附结构也不同。

Langmuir, 27, 11026-11036 (2011)
案例9:精确相对论方法计算重元素能带结构(Phys. Rev. Lett.,2011):
传统的铅-氧化铅电池已经有一个世纪的历史了,能够有实际用途,是由于每个伏打电池单元能够产生2V以上的电压,多个电池串联能够达到驱动电动机,锡化学性质与铅非常相近,但与铅相比,相对论效应小很多,导致锡电池产生的电压也远小于铅。

Physical Review Letters 106, 018301 (2011)
本文从理论上阐明了铅、锡以及不存在相对论效应的“假想铅”的巨大差别。
更多信息参考
- 了解更多BAND功能、中文实例教程、文献重现、学习量子化学基础知识,请访问 费米维基 >> AMS知识库