概述 混合动力电动汽车和其他电力电子系统的快速发展增加了对功率模块中高可靠性键合技术的需求,电源模块要在高功率和高频率下运行,且具备高度集成性和小型化的特点。下一代半导体材料碳化硅(SiC)能够代替传统材料提供更低的功率损耗、更高的开关速度和工作温度。粘合层也暴露在很高的温度下,因此也应该提高接头的性能指标和可靠性。 本项目提出了一种利用 Cu 颗粒与 Sn 基焊料瞬时液相烧结(TLPS)的低温结合技术作为高温功率模块的贴片解决方案。铜-金属间化合物-树脂(Cu-IMC-resin)的微观结构由 Cu 颗粒与部分填充有聚酰亚胺树脂的 Cu-Sn 金属间化合物(IMCs)连接而成,采用新型铜-焊料-树脂复合材料作为氮气气氛中的接合材料通过 250℃ 下 1 分钟的无压 TLPS 工艺获得。然后利用三维图像重建模型的有限元分析评估 Cu-IMC-resin 独特微观结构的宏观和微观变形特性。 亮点 采用Cu 颗粒与 Sn 基焊料瞬时液相烧结(TLPS)的低温键合技术在 Simpleware 中处理Cu-IMC-resin的图像数据并生成高质量的网格模型在 ANSYS Workbench 中模拟微观结构的宏观和微观变形特性 图像获取 Cu-焊料-树脂复合材料是一种含有 Cu 颗粒、Sn-3Ag-0.5Cu(SAC305)焊料颗粒和聚酰亚胺(PI)热固性树脂的糊状物。Cu 颗粒和焊料颗粒的尺寸分别约为 10 µm和 3 µm,铜的重量百分比含量大约是焊料的三倍。使用 Cu-焊料-树脂复合材料将 SiC 芯片键合到直接键合铜(DBC)基板上,芯片尺寸约为 8 × 8 × 0.3 mm,表面镀有 Ni/Au 金属。DBC 基板由两个连接到 0.6 mm厚氮化硅(Si3N4)基板上的 0.3 mm铜电极组成。在氮气气氛中使用无压回流工艺在 100℃ 下预热 […]