MBe2 (M=Zr, Hf)中的π-π键与超导性(Angew. Chem. Int. Ed. 2021)

Posted · Add Comment

丹麦奥胡斯大学Maarten G. Goesten教授,近期发表了关于MBe2 (M=Zr, Hf)层状结构能带与层间相互作用能,及其超导性的研究结果。铍是一种s区元素,在ZrBe2和HfBe2合金中形成离域Be-Be π键的芳香族网络,从而构造出[Be2]4-层状堆叠,中间为+4价阳离子(如下图所示)。[Be2]4-亚晶格与石墨等电子、同构,MgB2中的[B]-2亚晶格也是如此,并且在其电子能带结构中与π键具有相同的表现。 它们在布里渊区的K和H处,出现能级的(近)简并,但由于层间轨道相互作用,而导致能量上的分离。Zr和Hf利用它们的价态d轨道,在层与层间形成键,导致几乎相同的能带结构。像MgB2一样,ZrBe2和HfBe2在环境压力下,经计算为声子介导的超导体,临界温度分别为11.4 K和8.8 K。声子和自由电子之间的耦合强度非常相似,因此临界温度的差异,由层间阳离子的质量(Mass)控制。 本文的DFT计算采用AMS软件BAND模块完成。 参考文献: Maarten Goesten, Be-Be π bonding and predicted superconductivity in MBe2 (M=Zr, Hf), Angew. Chem. Int. Ed., 2021, DOI:10.1002/anie.202114303

电子耦合如何决定分子晶体不同晶相的能量稳定性?(Chem. Mater. 2019)

Posted · Add Comment

分子单体之间的电子耦合是决定有机半导体电荷输运的一个关键因素,而这直接受分子排布方式所影响。 Christian Winkler等研究了喹吖啶酮不同晶相下的分子间的相互作用,及其对能量稳定性的影响。为了深入研究这种影响,作者从α晶相喹吖啶酮为原型创建了共面的模型晶体,从而系统地比较电子耦合、总能量与位移的相关性。 通过这种方法确认,泡利排斥以及轨道的再次杂化,促使该体系倾向于电子耦合最低的晶体结构。这种趋势具有一定普适性,并五苯类似物也有这种趋势。 这表明,高性能的材料设计不能依赖有机半导体π共轭骨架结构“自然地”组装,必须引入官能团,引导晶体向更有利的结构方向发展。其中,以短轴位移为目标或实现相当大的长轴位移的策略,值得深入研究。 本文使用了AMS中的BAND模块的pEDA功能,将分子间的相互作用能分解为泡利排斥能、轨道相互作用能、静电作用能。并使用ZORA方法考虑相对论效应对电子动能的影响。 参考文献: Christian Winkler, Andreas Jeindl, Florian Mayer, Oliver T. Hofmann, Ralf Tonner, and Egbert Zojer,  Understanding the Correlation between Electronic Coupling and Energetic Stability of Molecular Crystal Polymorphs: The Instructive Case of Quinacridone,  Chem. Mater. 2019, 31, 7054–7069

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •