研究背景 无机磷酸铵盐粉体由于其优良的抑爆性能长期以来被人们广泛关注,其对瓦斯煤尘复合爆炸的有效性已经在众多实验及工程现场得到充分验证,主要通过定性定量分析无机磷酸铵盐粉体如 NH4H2PO4、(NH4)2HPO4 等对瓦斯煤尘复合爆炸压力演化、火焰传播等宏观特征的影响,然而无机磷酸铵盐粉体抑爆剂抑制瓦斯/煤尘复合爆炸的详细反应过程及其微观作用机理尚未了解。 研究方法 为了揭示无机磷酸铵盐粉体抑爆剂抑制瓦斯/煤尘复合爆炸的详细反应过程及其微观特征,研究团队采用反应力场分子动力学(ReaxFF-MD)与密度泛函理论(DFT)相结合的数值模拟方法对无机磷酸铵盐在抑制瓦斯煤尘混合爆炸反应中的分子动态演变过程及潜在反应机理进行了深入的研究。本研究为无机磷酸铵盐粉体抑制爆炸的反应进程提供了更多见解,有助于开发设计高效的抑爆剂。 图1 NH4H2PO4 及 (NH4)2HPO4 抑制瓦斯煤尘复合爆炸反应路径及作用机理 主要研究结论 相同质量分数的NH4H2PO4对CO2的抑制作用更显著,(NH4)2HPO4则生成更多H2O,在反应过程中无机磷酸铵盐抑制剂不仅对复合爆炸过程中CH4的初始反应步骤产生影响,同时吸收爆炸反应进程中的活性自由基(H/O/OH)及中间产物(CH3/CH2O)以阻抑链反应的继续发展。其中,NH4H2PO4主要通过HPO3→PO2→PO→HPO2→HPO3循环反应路径进行抑制,而(NH4)2HPO4在此基础上增加了H2PO4→H3PO4→H2PO3→H2PO4、HPO3→HPO2→H2PO3→H2PO4→HPO3两条循环反应路径。此外,NH4H2PO4的加入使C40+的分解速度下降35.3%,(NH4)2HPO4的加入使C40+的分解速度下降47.2%。同时,由于无机磷酸铵盐团聚效应及吸水效应,模拟过程中抑制剂的最佳抑制浓度表现为1:1。该浓度下,抑制剂的加入不仅延迟了复合爆炸过程中脂肪键、醚氧桥键断键的时间即煤分子分解时间,同时延迟了煤分子开环反应的时间即煤分子氧化时间。随着抑制剂质量分数的增加,其更易吸附大量水分子及含磷化合物,使原本开环反应后的物质重新连接而形成新的大分子基团,以阻抑反应的下一步氧化分解。 参考文献 Reactive behaviors and mechanism of methane/coal dust hybrid explosions inhibited by NH4H2PO4 and (NH4) 2HPO4: A combined ReaxFF-MD and DFT study, Chemical Engineering Journal, 2024, DOI: 10.1016/j.cej.2024.155577