采用基于 μCT 的有限元分析评估木材的导热系数

Posted · Add Comment

概述 木材是一种来自树木或木质植物的天然物质,在建筑、燃料、器皿、乐器和其他复合材料行业都有广泛应用。在燃料领域,木材也成为探索新型电极材料的关注点。木质纤维素和多通道微观结构有助于钒液流电池充电中离子导电型电解质的传质。无论是实验还是设计工作,研究控制介质传递热量内在能力的导热系数都具有非常重要的实际意义。 本项目提出一种结合 X 射线显微计算机断层扫描(μCT)和有限元分析(FEA)在介观尺度测试木材导热系数的方法。通过对具有两相成分(早材和晚材)的真实木材进行三维重建,研究纹理、孔隙率和水饱和度对木材导热性能的影响。 图像处理 本研究所用为松树锯材,纹理层是深/亮黄色交替的图案。纹理表示树木不同季节形成层活动下细胞纤维的取向,可分为早材和晚材。早材层源自薄壁木质细胞,呈现出明显较浅的颜色和较宽的线条图案。晚材呈现为较暗的线条图案,通常在夏季生长更密集且细胞壁含量更高。木材形成的纹理使其具有各向异性的材料特性。采用 μCT 在介观尺度获得木材试样的内部几何结构,尺寸为 15 × 15 × 20 mm。 图1:尺寸为 15 × 15 × 20 mm 的木块 考虑到计算资源和耗时,从三个不同位置裁剪 4 × 4 × 4 mm的感兴趣区域(ROI)作为模拟和分析的计算模型。对三个 ROI 的模拟结果进行平均得到具有统计代表性的均匀场,考虑到了整个木材纹理密度的异质因素。 图2:X-Y 和 X-Z 平面上木材断层扫描图像的分割 为了解尺寸对热传导模拟可靠性的影响,将 ROI 裁剪为体积从 1 mm3 到 64 mm3 的立方体模型。试样编号如 W4-T-0.8-0.6,W 表示木材;4 为模型边长 4mm;T 表示木纤维的横向(P 表示平行于木纤维);0.8 是早材孔隙率;0.6 是晚材孔隙率。 图3:不同尺寸的木材介观尺度结构(a)4 × 4 × 4 mm(b)3 × 3 × 3 mm(c)2 × 2 × 2 mm(d)1 × 1 × 1 mm 在 Simpleware […]