需要进行侵入性脑手术的常见原因是来自肿胀变形产生的的致命压力。在这种情况下,神经外科医生会尝试通过去骨瓣减压术缓解压力,切开颅骨让大脑“膨出”。这种方法通常是基于个人经验,具有导致患者严重残疾的风险。在去骨瓣减压术中,大脑神经纤维即轴突有被切断的风险,因此该手术成为外科医生“最后的手段”。 斯蒂文斯理工学院、斯坦福大学、牛津大学、埃克塞特大学等在该领域都已取得了突破性的进展。研究人员开发的工作流程中,使用 Simpleware 软件处理医学图像和生成大脑的有限元(FE)模型,用以模拟不同条件下的开颅手术。这些方法的运用能够使神经外科医生深入地了解极端状况下的组织运动学,有助于规划开颅手术的形状和位置。 创建大脑模型 图1:由3Tesla扫描设备获得成年女性脑部 MRI 图像 大脑包含数十亿神经元和数万亿的突触,所以建模会非常困难。使用 Simpleware 软件通过分割大脑和颅骨的关键区域可以降低这种复杂性。从 3T 扫描仪(GE)获取成年女性头部 MRI数据,导入 Simpleware ScanIP 中进行图像处理,识别分割出感兴趣区域,如组织、小脑、皮肤和颅骨等。 图2:在 Simpleware 软件中创建的头部 FE 网格模型 接下来的挑战是从复杂的分割图像数据中生成可用于仿真的有限元模型。在 Simpleware FE 中利用专有算法同时对不同区域进行精细地网格划分,生成的网格模型可直接用于仿真求解器,无需其他任何后处理。 模拟去骨瓣减压术 将有限元网格模型导入 ABAQUS ,研究具有两种不同颅骨开口的颅骨切除模型:单侧瓣和额部骨瓣。定义材料模型、边界条件、相互作用、约束后,分析不同的溶胀场景。模拟的目的是预测去骨瓣减压手术对大脑的机械负荷,包括白质组织和特定半球的最大体积肿胀。 图3:去骨瓣减压术计算模拟的矢状面和横断面及对应的左侧大脑半球肿胀 结果&结论 该方法研究了位移场、最大主应变以及径向和切向轴突拉伸的影响。模拟可以确定最佳的开口大小,从而控制压力和最大限度地减少轴突损伤的风险。颅骨开口边缘处高强度拉伸的结果表明,预计较大的颅骨切口会减少和分散在大脑中的轴突负荷。研究还发现,打开肿胀同侧的颅骨会产生更好的患者预后。 图4:三种不同脑肿胀场景的中线移位 个性化的头部和大脑模型是改善去骨瓣减压手术效果的有效工具。神经外科医生受益于能够获得辅助术前规划的新数据,同时不同场景的模拟可以实现针对特定患者的手术方案。更长期的临床影响包括减少手术并发症和需要进行的实验测试。在未来,该工作流程可以扩展到任何涉及脑损伤、撞击以及电磁(EM)治疗的场景中。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/news-and-events/simulating-brain-surgery.htmlWeickenmeier, J., Saez, P., Butler, C.A.M., Young, P.G., Goriely, A., Kuhl, E., 2017. Bulging Brains. Journal of Elasticity, 129(1-2), […]