研究背景
随着微电子器件向更小尺寸和更高能效发展,传统场效应晶体管逐渐面临亚阈值摆幅限制和功耗瓶颈。隧穿二极管,尤其是具备负微分电阻(NDR)效应的器件,因其在高速开关、存储及多值逻辑电路中的应用潜力而受到广泛关注。二维材料由于其原子级厚度和出色的电子性能,为新型隧穿器件的设计提供了理想平台。近年来,一类被称为“冷金属”的二维材料引起研究者兴趣,它们在费米能级附近具有孤立电子态,有利于实现高峰值电流密度与超高峰谷电流比(PVCR)。本研究以 NbSi2N4/HfSi2N4/NbSi2N4 横向异质结构为基础,提出一种新型二维隧穿二极管设计,为构建低功耗、高性能的未来电子器件提供了新的思路与理论支持。
研究内容
研究采用密度泛函理论结合非平衡格林函数方法,研究了具有不同势垒厚度的横向隧穿二极管在锯齿形和扶手椅方向上的电流-电压(I-V)特性。与扶手椅取向相比,锯齿形取向的隧穿二极管显示出更高的峰值电流密度,而扶手椅型取向的隧穿二极管显示出更大的峰谷电流比(PVCR)。研究结果表明,MA2Z4 材料是实现具有超高 PVCR 值的 NDR 隧穿二极管有望候选者,可能在存储器、逻辑电路和其他电子器件中有潜在的应用。
通过计算能带结构发现 NbSi2N4 具有“冷金属”二维材料电子特性,HfSi2N4 为直接带隙半导体。

不同于传统的 Esaki 二极管几乎无法获得消失谷电流的特性,本文中的扶手椅型隧穿二极管在 1.0-1.3 V 偏置电压区间内出现消失的谷电流,而对于锯齿形隧穿二极管,从 NDR 过渡到第二个正微分电阻(PDR)发生在一个非常窄的电压窗内。

通过计算复数能带解释扶手椅型和锯齿形两种隧穿二极管的电流密度峰值差异,以及势垒厚度对电流密度的影响。

总结
基于第一性原理计算,本文设计了一种基于二维冷金属材料的横向隧穿二极管。研究选用 NbSi2N₄ 与 HfSi2N₄ 构建异质结构,其中 HfSi2N₄ 作为势垒层,NbSi2N₄ 作为电极。该结构利用 MA2Z₄(M = Nb、Ta;A = Si、Ge;Z = N、P)类二维材料在费米能级附近呈现孤立金属态的“冷金属”特性,在不同晶向(zigzag 与 armchair)上展现出显著的负微分电阻(NDR)效应。计算结果显示,器件可实现超高峰谷电流比(PVCR),armchair 方向可达约 500,远优于现有的 Ge 基或 MoS₂ 基 NDR 器件。这项研究不仅展示了二维冷金属材料在低功耗、高性能隧道电子器件中的应用潜力,也为相关器件设计与优化提供了理论指导,具有重要的科研与应用价值。
参考文献
- Bodewei P, Şaşıoğlu E, Hinsche N F, et al. Computational design of tunnel diodes with negative differential resistance and ultrahigh peak-to-valley current ratio based on two-dimensional cold metals: The case of NbSi2N4/HfSi2N4/NbSi2N4 lateral heterojunction diode[J]. Physical Review Applied, 2024, 22(1): 014004. https://doi.org/10.1103/PhysRevApplied.22.014004