甲烷在MoO3(010)表面催化脱氢的密度泛函理论研究(Comput. Theor. Chem. 2022)

Posted · Add Comment

随着石油和天然气价格的波动以及新冠病毒在全世界爆发,将天然气转化为具有更高经济和战略重要性的增值化学品的需求和研究兴趣越来越强烈。此外,对氢燃料的需求不断增长,以及全球芳香族化合物和烯烃的短缺,都是甲烷转化的额外动力,甲烷的非氧化转化生产清洁氢燃料,被认为“未来燃料”。 最近Badran等人,利用AMS软件BAND模块,使用DFT计算甲烷在MoO3(010)表面两种不同超胞上的吸附,研究了甲烷在氧化钼(MoO3)表面的催化脱氢。研究发现,对于CH4的吸附,在Mo和O网格构成的光滑表面,比悬垂O原子构成的表面更有利,这与过去的认知有所不同。 甲烷在MoO3(010)表面的吸附位置 甲烷在MoO3上脱氢的反应机理 研究亮点: 在新的MoO3(010)超胞上吸附甲烷,用于甲烷转化研究非氧化条件下,甲烷在MoO3表面分解的反应机理该反应主要导致生成 · CH3、H2和乙烯第一次CH3-H键断裂的活化能低至66.4 kJ/mol 参考文献: I. Badran, N. Sahar, R. Amjad, M.S. Nashaat, N.Nassar, Density Functional Theory Study on the Catalytic Dehydrogenation of Methane on MoO3 (010) Surface, Comput. Theor. Chem. 1211: 113689 (2022)

AMS在石油化学工业中的应用

Posted · Add Comment

概述 随着计算机性能与计算理论方法的改进,在原子分子水平模拟分子的结构与行为,在石油化工领域得到越来越广泛的应用。在高分子材料、分子筛催化剂以及油品添加剂的研发中,计算模拟能够帮助研究者更深入地理解所研究的体系,促进新分子筛催化剂、高分子材料的的开发与改性,油品添加剂新产品研制,减少实验工作,缩短研发周期。 分子筛催化 结构 分子筛存在大量的真空区域,基于平面波的DFT计算将耗费大量时间在无意义的真空区域。BAND采用STO+NO基组,从而大大节省计算时间,使用GGA等泛函进行结构优化具有较好的可行性 吸附与扩散 BAND、DFTB提供D3(BJ)、D4(EEQ)色散修正,更精确的计算分子吸附通过基于DFT、MOPAC、DFTB或力场的分子动力学模拟能够非常便捷地计算扩散系数分子筛与分子之间相互作用能量的分解分析,以及电子转移的定性图像 巨正则系综蒙特卡洛、分子动力学模拟吸附等温线 高分子催化 高分子聚合催化剂的结构优化 高效并行的ADF能够支持大分子的DFT结构优化支持多尺度方法,用户可以灵活划定聚合物原子区域,对不同区域采用不同的理论,协同优化聚合催化剂结构对于一维周期性结构BAND采用的STO+NO基组大大提高计算效率,能够以比相对于平面波方法低一个数量级以上的计算成本,完成高精度GGA结构优化 高分子催化反应机理 吸附结构优化多尺度方法计算反应过渡态、活化能、反应历程对于一维周期性结构,支持高精度、高效率的DFT过渡态搜索、活化能计算、反应历程使用ReaxFF分子动力学模拟对聚合物的力学性质,如杨氏模量、屈服点、泊松比进行预测ReaxFF探索未知反应机理聚合物与分子之间相互作用能量的分解分析,以及电子转移的定性图像 油品添加剂 热解与燃烧 DFTB、MOPAC、ReaxFF均可作为分子动力学模拟引擎,支持同样的结果分析工具;ReaxFF作为经典的热解与燃烧分子模拟工具,包含最丰富的反应力场,广泛应用于该领域的研究 Bond Boost、REMD、CVHD、fbMC等加速反应方法,能够让分子动力学模拟在实验温度下,得到宏观时间尺度化学反应的结果 Mol Sink允许在分子动力学模拟过程中,定时清除指定产物;Mol Gun可以定时添加反应物 自动分析产物数量变化、基元反应、反应速率常数 其他研究工具 COSMO-RS 气-液相平衡、液-液相平衡最优萃取溶剂优化活度系数、溶解度、pKa、logP 使用定量构效关系估算物质性质:密度、熔点、沸点、闪点、介电常数、液态摩尔体积、分子范德华体积与表面积等EDA-NOCV 键能分解分析,对分子间范德华作用、氢键作用能进行分解分析,分析泡利排斥、静电作用、轨道作用、色散作用能大小分析化学键形成机理,电子在分子轨道中的定量转移,以及定性图像固体表面与分子之间相互作用能量的分解分析,以及电子转移的定性图像 分子动力学粘度 研究实例 实例1:适用于天然气制低碳烯烃的钴金属催化剂 Jingxiu Xie, Pasi P. Paalanen, Tom W. van Deelen, Bert M. Weckhuysen, Manuel J. Louwerse & Krijn P. de Jong Promoted cobalt metal catalysts suitable […]

【QuantumATK亮点文章】单分子反应的电场诱导选择性催化(Sci. Adv. 2019)

Posted · Add Comment

引言 随着单分子电学检测技术的迅速发展,分子电子学的研究已不再局限于分子电子学器件的构筑及其电学性质的测量,而是扩展到单分子尺度化学反应过程的探索。单分子裂结技术能够直接观察单个分子的始态、终态和中间态,采用此技术并通过施加定向外部电场,有望实现对单个分子乃至单个化学反应的操纵和调控,从而在纳米尺度的反应器中实现对单个分子化学反应速率的选择性调控,为未来基于清洁能源的绿色化学合成提供了新思路。近日,厦门大学洪文晶教授、程俊教授和兰州大学张浩力教授在电场选择性调控特定化学键的反应速率研究方面取得重要突破。相关研究成果以“Electric-field-induced selective catalysis of single-molecule reaction”为题发表于Science Advances。 成果简介 针对这一挑战,该研究团队自主研发了高强度定向电场下研究化学反应速率的精密科学仪器技术,将单个有机分子定向地连接在两个原子级尺寸的电极之间,从而解决了化学反应中分子取向控制的问题。通过电极对单个分子施加了高达108-9 V/m的定向电场和对反应的分子计数,精确测量了两步连续反应中每步的反应速率。在纳米尺度反应器内中发现:若施加电场与反应轴垂直,电场对化学反应没有影响;如果电场在反应轴方向有分量,电场可以使反应速率提升超过一个数量级。通过单分子器件电输运模拟证实了化学反应路径的中间态;过渡态计算结果表明定向电场可以有效地稳定化学反应的过渡态,从而降低反应能垒。 这一跨学科合作,在国际上首创了利用定向外部电场选择性调控化学反应速率的仪器和技术,实现外加电场对化学反应的有效调控,提出了将外加电场作为智能催化剂创新思路,对基于清洁能源的绿色化学合成和化工清洁生产的发展具有重要意义。 参考文献 X. Huang, C. Tang, J. Li, L. C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen, M. Bai, H. L. Zhang, H. Xia, J. Cheng, Z. Q. Tian and W. Hong. […]

使用巨正则系综反应力场模拟铂电催化剂的氧化与失活(Small 2019, Angew. 2017)

Posted · Add Comment

铂基纳米颗粒电催化剂是目前应用领域最广的氧还原催化剂,在金属-空气电池,等离子体催化,以及质子交换膜燃料电池等领域均有应用。由于贵金属成本高昂,燃料电池要得到广泛应用,就必须优化这些贵金属材料的使用效率。目前最主要的努力方向,是增大阴极氧还原反应活性,以及通过最大限度地减少失活、减少Pt负载提高寿命。与非铂族金属形成合金,或者通过改变催化剂纳米粒子形状,裸露不同类型的表面、边缘、扭结以及其他低配位位点,从而控制反应活性和选择性,都非常有效。 在这些研究中,计算模拟扮演了非常重要的角色。冰岛大学(UI)Donato Fantauzzi课题组与德国卡尔斯鲁厄理工学院(KIT)Timo Jacob课题组,通过理论模拟与实验结合研究表明,近环境压力下单晶Pt(111)面上确实存在稳定的表面氧化物,并且对其电催化行为有潜在的影响。Seriani等人通过DFT计算表明,数层Pt3O4在Pt(100)表面具有热力学稳定性,并对甲烷再离解具有催化活性。深入研究表面氧化物对催化的影响,对提高材料催化活性意义重大。 Donato Fantauzzi课题组与Timo Jacob课题组使用了巨正则系综(GCMC)与反应力场(ReaxFF)相结合的方式,研究了铂纳米粒子的氧化。模拟模型为2~4nm的立方颗粒,该尺寸与燃料电池中实际使用的尺寸相当。尺寸过大,计算成本也会更大,尺寸过小可能导致该力场有效性得不到保证(原因详见原文)。通过两相热化学(2PT)方法得到显式溶剂化和热化学贡献,确定了热力学上最稳定的氧化物结构,进一步得到了更精确的能量数据,并使用扩展从头算热力学(EAITD)构建了电位相关相图。 结果表明,铂纳米颗粒的氧化始于纳米粒子的边缘和顶点,(111)面表现出令人惊讶的抗氧化能力。与标准氢电极(SHE)相比,在0.8~1.1 V之间(与典型燃料电池环境一致),表面氧化结构是稳定的。这表明,干净的金属表面可能不适合作为铂氧化催化剂的模型体系。完全氧化后,纳米颗粒裂开成Pt6O8单元。DFT计算发现这些[Pt6O8]4-具有高稳定性、亲水性。因此认为[Pt6O8]4-承担了燃料电池中离子铂的输运,从而对燃料电池催化剂失活扮演了重要角色。 文献: Growth of Stable Surface Oxides on Pt(111) at Near‐Ambient Pressures, Dr. Donato Fantauzzi Sandra Krick Calderón Dr. Jonathan E. Mueller Mathias Grabau Dr. Christian Papp Prof. Dr. Hans‐Peter Steinrück Dr. Thomas P. Senftle Prof. Dr. Adri C. T. van Duin Prof. Dr. Timo Jacob, Angew. Chem. Int. Ed., 2017, 56, 2594 […]

表面等离激元促使温和条件下纯水固氮(JACS, 2019)

Posted · Add Comment

模拟自然中的固氮环境(相似的环境压力、室温、纯水和入射光)能对未来氮转化提供有效途径。N≡N键的热裂解能非常高,在温和条件下,氮的还原通常经历缔合交替或远端途径,而非通过解离机制。中国科技大学熊宇杰课题组报道,在水与光照条件下,表面等离激元能够为N2解离提供足够的活化能,并通过原位同步辐射的红外光谱和近环境压强下X射线光电子能谱得到证实。 理论模拟表明,表面等离子体增强对电场的增强,以及等离子体热电子、界面杂交可能在N≡N解离中起重要作用。尤其是AuRu芯-天线纳米结构的活性位点以及更宽的光吸附截面,导致在室温和2 atm压力下,在没有任何牺牲试剂的情况下,达到了101.4 μmol/(g·h)的氨生成速率。本项研究成果突出了表面等离激元对惰性分子活化的意义,为开发新型催化体系提供了一个有前景的平台。 结构优化计算采用BP86泛函以及DZP大冻芯基组,并使用ZORA标量相对论方法考虑相对论效应的影响。计算电子密度空间分布时,采用BP86/TZP,并使用Unrestricted方法处理开壳层体系(即α与β电子不完全配对体系)。所有计算使用ADF完成。 Canyu HuXing ChenJianbo JinYong HanShuangming ChenHuanxin JuJun CaiYunrui QiuChao GaoChengming WangZeming QiRan Long*Li SongZhi LiuYujie Xiong*, Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions, J. Am. Chem. Soc.2019, 141,19, 7807-7814

ADF Highlight:卤键在超分子动力学过程中的催化作用(Nature Comm.,2019)

Posted · Add Comment

文献资料:Patrick M. J. Szell, Scott Zablotny & David L. Bryce, Halogen bonding as a supramolecular dynamics catalyst, Nature Communications volume 10, Article number: 916 (2019) 动力学过程对催化剂、酶、主-客复合物、分子机器等功能分子有重要影响。本文通过氘核磁共振弛豫实验,展示了2,3,5,6-四甲基吡嗪共晶中,卤键对甲基转动的催化作用。作者观察到,与纯的2,3,5,6-四甲基吡嗪共晶相比,卤键共晶中,甲基转动的活化能垒平均下降了56%,氢键共晶下降了36%。 密度泛函计算的结果表明,对位交叉构象不稳定,邻位交叉构象却非常稳定,共同降低了能垒,导致了卤键超强的催化作用。此外,计算结果还表明,卤键的催化能力可能是可调的,卤键供体作用越强,催化作用越强。 本文DFT计算使用AMS中的ADF模块完成,分子模型从晶体结构中提取。因为存在分子间弱相互作用,因此使用Grimme3 BJDAMP色散修正泛函(即-D3(BJ)类泛函),使用ZORA方法考虑相对论效应对重元素的影响。甲基转动过程,使用其中Linear Transit功能完成,每一步转动2.5°。

QuantumATK独有的新功能:非平衡态格林函数方法研究半无限表面模型

Posted · Add Comment

概述 QuantumATK从最新版本开始引入了一个全新的、独一无二的半无限表面模型。与非平衡态格林函数方法配合,半无限表面模型可以比表面slab模型更完善的模拟表面体系。描述此方法的文章已经在Phys. Rev. B 96,195309 上发表(预印文章参见:https://arxiv.org/abs/1707.02141)。 模型 片层(Slab)模型 与其他的周期性模型程序类似,QuantumATK也可以用传统的Slab模型来描述表面体系,但Slab模型有很大的缺陷和局限: Slab最大的不足是无法模拟实际表面下方通常是无限大的块体材料; 由于厚度有限,Slab中的电子容易体现出量子限制的效应; 两个表面之间可能相互影响; 很难正确的在表面方向模拟外加电场; 经常需要表面钝化、偶极校正等额外补救措施。 单电极表面(One-probe surface)模型(或半无限表面模型) 为此,QuantumATK 基于 DFT 和格林函数方法方法开发了真正可以模拟半无限表面体系的模型,即将一个表面 Slab 模型耦合于半无限的块体结构上(见下图)。 这种模型有以下几个独特的优势: 算法复杂度降低,特别适合大体系计算; 表面性质对表面层数的依赖显著降低; 只需很少的层数就可以再现块体的电子态; 可以正确的施加垂直表面方向的电场,模拟电场对表面体系的影响。 应用 文章报道了半无限表面模型的原理和应用,这些应用实例展示了半无限表面模型和格林函数方法的精确性,也证实了这个模型在表面体系研究中比传统模型具有明显的优势。 计算过渡金属的功函数 计算贵金属和拓扑绝缘体的表面态 Ge(001)|Si薄膜半导体异质结构的能带对齐 电场对碘在Pt(111)上吸附的影响   NanoLab高级图形用户界面:专注于研究,更快获得结果 NanoLab 图形用户界面丰富易用的功能可以让用户专注于研究项目的科学问题,专心思考科学问题,更快的发现新材料、创建新结构,避免在数据的导入、导出、处理、作图等琐碎的问题上浪费时间。NanoLab 可以: 最强大的材料表面结构建模工具 直观的选择表面方向和表面超胞 最合理的表面结构优化方法 快速构建各种结构模型 内嵌晶体结构数据库 搜索在线晶体结构数据 应用领域 与QuantumATK中的结构优化、能量计算、CI-NEB过渡态搜索等功能结合,这种模型还在表面化学、催化等领域有广泛的潜在应用。 表面功函数 表面态 表面反应过渡态与催化 拓扑绝缘体 相关的实例教程 表面结构与吸附 表面分子吸附体系建模:中文教程、英文教程 硅表面重构研究:中文教程、英文教程 CO在Pd(100)表面的吸附:英文教程 […]