超快的HSE杂化泛函计算

Posted · Add Comment

概述 HSE 06 杂化泛函是计算半导体带隙的常见方法,但该方法过去一直受限于计算速度非常慢的因素,只能用于很小的体系计算,无法用于快速的材料筛选。QuantumATK 的最新版本 (R-2020.09)将 HSE 与 LCAO 基组结合实现超快的杂化泛函计算,同时又保持了HSE对半导体带隙的计算精度。HSE-LCAO 方法目前应用于块体体系主要用于块体体系的电子态和光学性质的计算。 半导体带隙。对半导体材料的单胞带隙验证计算结果如下。 计算速度。53 硅原子(B 掺杂)体系的态密度计算 4 核并行计算时间仅须 22 分钟,而使用平面波方法可能需要 2 天。 应用   半导体缺陷。结合 QuantumATK 中提供的 Sentaurus Materials Work Bench 工具,可以直接研究半导体带电点缺陷形成能等重要性质。 能带排列。结合 QuantumATK 提供直接计算 LDOS 能带排列的计算和作图工具,可以将将此方法用于界面体系可以很方便的研究不同材料间的能带排列,下图是使用 HSE 和 PBE 计算结果的对比。 超大多层堆叠。HSE-LCAO应用于 1969 个原子的的半导体中典型的堆叠体系(Si|SiO2|HfO2|TiN),仍然可以使用较少的计算资源(48 核心)在短时间(16小时)内完成计算,得到直观的能带排列图。 参考 QuantumATK R-2020.09新版发布 Sentaurus Materials Workbench简介 立即试用 QuantumATK! 下载QuantumATK软件安装包 申请QuantumATK的全功能试用许可  

用活化畸变模型理解化学反应性 (Nat. Protoc. 2020)

Posted · Add Comment

荷兰自由大学F. Matthias Bickelhaupt与Trevor A. Hamlin课题组最近提出了基于活化畸变模型(Activation Strain Model, ASM)的化学反应性研究方法,基于该模型的化学反应分析工具PyFrag 2019发布于材料化学模拟平台Amsterdam Modeling Suite(简称AMS) 2019.3版中。这种最先进的计算技术能够协助化学家们预测化学反应性,并合理设计新的化学反应,普适于所有反应类型,包括无机、有机、超分子、生化等领域。其他方法只分析势能面上某一个驻点,而该方法对反应坐标沿路能量的变化进行分析。 ASM方法基于ADF模块(或BAND模块)非常经典的片段分析功能,主要基于: 反应物分子从单独存在时的能量最低结构,形变到反应要求的结构所需的能量 变形的反应物分子间的相互作用能 这种方法让用户能够洞察决定反应能垒的诸多要素,以及化学反应性趋势。ASM虽然已被多篇综述介绍(Chem. Soc. Rev. 43, 4953, 2014;WIREs Comput. Mol. Sci. 5, 324, 2015;Angew. Chem. 129, 10204, 2017),但尚缺乏具体的清晰的使用步骤指南,因此作者在本文中以AMS软件中的ADF模块为例,介绍ASM的应用步骤。对于周期性体系而言,该方法同样适用,只是对应使用AMS软件中的BAND模块。之所以使用AMS软件,是因为该软件支持: 与ASM匹配的能量分解分析(EDA):将ASM得到相互作用能分解为几项具有明确物理含义的能量项(具体含义参考:能量分解分析(EDA),或本文介绍文献的原文) 分子轨道分析:将分解得到的各能量项与反应物分子轨道联系起来 路线图如下: 以甲基叠氮与环庚炔、环壬炔的反应为例: 上图中ASM-EDA分析中得到的能量项,被投影到新形成的C····N键平均距离。该距离是这一类反应的关键反应坐标,直接与反应过程相关。得到的活化应变图表明,环壬炔的环加成势垒比环庚炔高。由于二者的形变能ΔEstrain曲线几乎重叠,因此相互作用能ΔEint的大小趋势决定了反应能垒的大小趋势。进一步分析ΔEint各分项的趋势,发现泡利排斥能或多或少被静电相互作用能ΔEelstat抵消(上图d)。另一方面,轨道相互作用ΔEoi对总的相互作用能趋势,即反应能垒的趋势,起到决定性作用。 Kohn-Sham分子轨道分析印证了ΔEoi趋势的合理性:环庚炔、环壬炔,何者的预形变或弯折越大,则其的FMO(碎片分子轨道) Gap就越小,同时空-占轨道重叠越强(注意这里的空、占轨道是指发生相互作用的分子轨道,一定是某个分子的占据轨道与另一个分子的空轨道),越利于反应。与环壬炔相比,环庚炔的形变程度更大,导致其HOMO稳定性更低(从而能量越高,反之亦然),LUMO稳定性更高,从而导致FMO Gap更小。另外,环庚炔形变更大,从而导致其HOMO、LUMO朝向甲基叠氮部分与甲基叠氮LUMO、HOMO的重叠比环壬炔更大。所有这些因素叠加在一起,导致环炔越小,轨道相互作用越强。 PyFrag 2019使用手册,参考:https://www.scm.com/doc/ADF/Input/PyFrag.html Pascal Vermeeren, Stephanie C. C. van der Lubbe, Célia Fonseca Guerra, F. Matthias Bickelhaupt & Trevor A. Hamlin,  Understanding chemical […]