二维范德华异质结构中自旋轨道扭矩的第一性原理模拟和材料筛选

Posted · Add Comment

简介 二维范德华(2D vdW)材料中自旋轨道扭矩(SOT)技术的最新进展不仅将自旋电子器件推向了原子极限,还揭示了非传统扭矩和新型自旋转换机制。在众多2D vdW 材料中观察到的SOT的巨大多样性需要一种筛选策略来确定扭矩器件性能的最佳材料。为了解决这一关键问题,采用密度泛函理论和非平衡格林函数的结合来计算各种二维vdW双层异质结构中的 SOT,发现了三种高 SOT 体系:WTe2/CrSe2、MoTe2/VS2 和 NbSe2/CrSe2。此外,提出了一种允许快速有效地估计SOT的品质因数的方法,从而能够高通量筛选未来SOT应用的最佳材料和器件。 背景 自旋轨道扭矩(SOT)是一种新兴的自旋电子技术,能够通过电流有效地操纵磁化,它激发了各种有前景的应用,包括基于 SOT 的磁阻随机存取存储器(MRAM)、微波器件和非易失性逻辑器件。与商业自旋转移扭矩技术相比,SOT 有望实现更高的电荷到自旋效率、更快的写入操作、更低的写入电流和更多的应用通用性,使其成为一项快速发展的技术。传统的 SOT 器件通常由与自旋轨道耦合(SOC)层相邻的铁磁(FM)层组成,如重金属,由于 SOC 效应,电荷电流被转换为自旋极化电流。这种自旋电流产生一个扭矩,操纵和切换FM层中的磁化。在许多基于各种材料的 SOT 器件中观察到了广泛的扭矩效率,包括拓扑绝缘体和过渡金属化合物。 近年来,各种二维范德华(2D vdW)材料的发现,包括 2D 过渡金属二硫化物(TMD)、2D 磁体和Weyl半金属,为SOT器件开辟了新的途径。2D 材料提供了非传统的 SOT 和新的磁化转换机制。某些二维TMD,如 WTe2,由于其较大的 SOC 效应和较低的晶体对称性,已被发现可以产生具有高扭矩效率的非传统平面外反阻尼 SOT。据报道,2D 磁体具有长程磁序、强垂直磁各向异性和显著的霍尔效应。特别是,2D vdW 拓扑铁磁金属 Fe3GeTe2 显示出巨大的 SOT,提供了对磁态和相变的强大控制。2D vdW SOC/FM异质结构,如与低对称性WTe2 相邻的垂直极化Fe2.78GeTe2,已被实验验证为无场确定性磁开关。 研究内容 先前关于 SOT 器件的理论研究主要集中在扭矩产生机制和磁化转换动力学上。在这项研究中,作者采用密度泛函理论(DFT)结合 QuantumATK 中实现的非平衡格林函数(NEGF)来计算 2D vdW SOC/FM 双层异质结构中的本征 SOT。 作者考虑了一组与自旋电子学相关 2D […]

非对称导电通道和电势重分布的竞争决定了层状铁电材料随极化变化的电导率

Posted · Add Comment

研究简介 存内计算利用存储器进行原位计算,因此有望突破由于数据移动带来的时延与功耗瓶颈。α-In2Se3、和AgSiP2Se6等层状铁电半导体结合了原子级厚度的半导体用于小尺寸逻辑的优势和铁电性用于非易失性存储器的优势。这些半导体为存内计算提供了理想的平台。利用层状铁电半导体作为通道,可以在双端或者三端器件中实现逻辑、内存和神经形态计算功能。这些器件中的多种电导状态为逻辑和内存的集成提供了物理基础。在这种情况下,实现精确的电导调制就变得至关重要。然而,铁电沟道场效应晶体管(FeCFET)中的电导受到铁电极化状态的强烈影响。这种极化-电导耦合出现在铁电沟道内部,与常见的铁电场效应晶体管(FeFET)中不同功能区之间的耦合显著不同。要实现基于各种层状铁电半导体的逻辑和存储器件的功能和性能优化,就必须回答沟道极化如何影响电导这一根本问题。 图1. 双栅极α-In2Se3铁电半导体沟道晶体管 研究内容 作者基于密度泛函理论计算与量子输运模拟,解析了层状铁电半导体α-In2Se3中极化相关电导率的两种基本机制:隐性Stark效应导致的非对称导电通路(图1)和栅极外场诱导的电势重分布(图2)。在这里,作者运用了QuantumATK的能带计算与投影功能来分析不同极化状态下内建电场对铁电半导体能带的影响,运用了QuantumATK计算电势分布、态密度、透射系数等功能研究了器件的输运性质。在文章中,作者后续的实验测试结果进一步验证了这两大机制。 图2. 层状铁电半导体中的隐性斯塔克效应导致非对称导电通路的形成 图3. 相对于栅极的铁电极化方向决定的电势重分布 在理清了极化与电导之间的耦合规律之后,作者提出了精确控制双栅极铁电沟道场效应晶体管的导电阈值的两大策略,即控制导电通道位置或者氧化物厚度,并实现了多种自切换存内逻辑功能。 参考 Quhe, R., Di, Z., Zhang, J. et al. Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics. Nat. Nanotechnol. 19, 173–180 (2024). https://doi.org/10.1038/s41565-023-01539-4

考虑自旋轨道耦合的二维范德瓦尔斯铁电半导体中可调的自旋体光伏效应

Posted · Add Comment

背景介绍 体光伏效应是一种特殊的非线性光学效应,它可以让在中心反演对称性破缺的体系中受到光照后产生直流电,这种效应和二次谐波效应(产生交流电)也具有密切的关系。自旋体光伏效应是体光伏效应的一种衍生子效应,特指材料在被光照射后可以产生自旋流。要产生自旋体光伏效应的核心是自旋-动量锁定,而考虑相对论效应则是最直接的一种实现自旋-动量锁定的方法。在本文中,作者系统地总结了由于相对论效应产生的自旋体光伏效应的机理,并通过对称性分析和第一性原理量子输运方法研究了在铁电调控下这些自旋流的调制情况。 研究内容 近日,北京大学物理学院吕劲课题组在Phys. Rev. B上发表了题为“Tunable spin photogalvanic effect in two-dimensional van der Waals ferroelectric semiconductors with spin-orbit coupling”的工作,该工作系统性地研究了由于自旋轨道耦合效应导致的自旋体光伏效应在范德瓦尔斯铁电材料中受铁电调控的一般情况。并且在研究面内铁电极化时发现一种全新的物理现象,即调控体系的铁电极化方向后,光激发的自旋流不发生改变,但电荷流的方向发生改变,作者将这种全新的现象命名为“隐藏的自旋流调控”效应。 本文中的相对论性第一性原理量子输运模拟是由QuantumATK实现(采用了相对论性的赝势和原子轨道基的结合),本文的结果表明了使用量子输运方法研究特定体系的输运性质(包括非线性光学效应)已经成为了继密度泛函微扰理论之后的又一有力工具。本文的第一作者为课题组博士方世博,通讯作者为北京大学物理学院罗昭初研究员和吕劲研究员。 以下是使用QuantumATK计算的自旋体光伏的电荷流和非共线自旋流性质,文中考虑了三种二维材料中的铁电调控情况,分别是面内铁电材料(BP-Bi为例): 面外铁电材料(α-GeTe为例): 和面内面外耦合的铁电材料(α-In2Se3): 总结: 该工作系统地提出了一个模型,用于描述自旋-光电旋效应(SPGE)在自旋轨道耦合(SOC)铁电半导体中的行为,考虑了一阶相对论扰动(Rashba效应),包括平面内、平面外和平面内-平面外耦合的自旋轨道耦合。在平面内铁电材料中,可以通过调节铁电性质来调制Sz分量的自旋电流,但不能通过圆偏振光来实现。在平面外铁电材料中,无论是线偏振光还是圆偏振光都可以通过调节铁电性质来调制Sx和Sy分量的自旋电流。在耦合铁电材料中,无论入射光的类型如何,都可以通过铁电性质有效地控制自旋电流的所有三个分量。通过采用第一性原理计算和量子输运,该文使用BP-Bi、α-GeTe和α-In2Se3这三个案例验证了这个模型。结果表明,当忽略高阶相对论扰动时,该模型是成立的。然而,当铁电材料受到来自高阶相对论效应(Dresselhaus效应)的扰动时,需要对模型进行特定修改。这项工作为未来关于电-光-磁耦合新型存储器的研究铺平了道路。 参考文献: Tunable spin photogalvanic effect in two-dimensional van der Waals ferroelectric semiconductors with spin-orbit coupling. Phys. Rev. B 109, 195202 (2024); DOI:https://doi.org/10.1103/PhysRevB.109.195202

磁性与自旋电子学应用(五)

Posted · Add Comment

范德华多铁隧道结中面向存算一体的磁电协同控制多级导电态(Nanoscale 2024) 范德华多铁隧道结有望实现小型化、高密度和非易失性存储,在下一代数据存储和存算一体器件中具有巨大应用潜力。福州大学材料科学与工程学院萨百晟课题组联合北京航空航天大学和华中科技大学,采用结合密度泛函理论与非平衡格林函数结合的计算方法,模拟了由铁磁半金属材料  作为自旋过滤势垒,金属材料  作为电极,铁电材料  作为隧道势垒组成的范德华多铁隧道结器件的自旋输运性质。器件采用双层  作为隧道势垒时可以同时实现显著的隧道磁阻和隧道电阻效应,在非零偏压下,最大隧道磁阻和电阻比率分别可达6237%和1771%。进一步发现在该多铁隧道结内存在四种可区分的电导状态,即仅需一个多铁隧道结单元就可实现四态非易失性数据存储。且通过等效的磁、电开关可以分别控制器件电流的通断和大小,通过搭建多铁隧道结阵列可同时实现逻辑计算和多级数据存储。这些研究结果揭示了该隧道结在存算一体以及多级数据存储器件中的潜在应用。 Cui, Z.; Sa, B.; Xue, K.-H.; Zhang, Y.; Xiong, R.; Wen, C.; Miao, X.; Sun, Z. Magnetic-Ferroelectric Synergic Control of Multilevel Conducting States in van Der Waals Multiferroic Tunnel Junctions towards in-Memory Computing. Nanoscale 2024, 16 (3), 1331–1344. https://doi.org/10.1039/D3NR04712A. 详细介绍:https://www.fermitech.com.cn/quantumatk/highlight-nanoscale-cui2024/ 二维CoI2/MnBr2异质结构中的双极磁半导体和掺杂可控自旋输运特性 二维异质结构材料的集成仍然是在实际应用中操纵自旋电子学的基本方法。作者利用密度泛函理论预测了条形反铁磁(AFM)单层 $\mathrm{CoI}_2$ 和 $\mathrm{MnBr}_2$ 结构向层内铁磁有序的层间AFM $\mathrm{CoI}_2$/$\mathrm{MnBr}_2$ 异质结构的转变。有趣的是,$\mathrm{CoI}_2$/$\mathrm{MnBr}_2$ […]

PT对称型反铁磁中光激发的奈尔自旋流

Posted · Add Comment

背景简介 近些年来,针对反铁磁中新奇物理和应用的研究逐渐成为凝聚态物理的研究热点。相对于铁磁体,反铁磁具备包括超快的太赫兹(THz)自旋动力学、对外部磁场扰动的强大稳健性以及不存在杂散磁场等优越的性质,这使得反铁磁体在下一代高度集成和超快记忆设备中具有很高的前景。与铁磁存储器件不同,反铁磁(AFM)存储器件的功能依赖于奈尔矢量($M_{\mathrm{Néel}}$)的操纵,它被定义为$M_{Néel}=M_{1}-M_{2}$,其中$M_{1}$, $M_{2}$分别代表磁子晶格的磁矩。由于反铁磁本身不显示整体磁性,因此奈尔磁矩很难被传统方法如外加磁场或者施加自旋极化电流所转换。针对此问题,中国科学院固体物理所邵定夫课题组最先提出了奈尔自旋流的概念[Phys. Rev. Lett. 130, 216702 (2023)]。他们提出在满足特定结构条件的PT-对称的反铁磁系统中可以通过施加偏压形成一股分布在不同磁子晶格的交错自旋流,他们命名为奈尔自旋流。这种奈尔自旋流可以扭转奈尔磁矩。 研究内容 近日,吕劲课题组博士生方世博等人提出在PT-对称的反铁磁系统,通过光激发的方式同样可以产生奈尔自旋流。并且和线性响应的电激发的奈尔自旋流不同,光激发奈尔自旋流是一种非线性效应,其产生的奈尔自旋流形式也远远复杂的多。具体表现为光激发的奈尔自旋流会表现为两种形式,一种是不同磁子晶格的交错自旋流,另一种是不同子晶格中的反平行自旋流, 他们的区别在于自旋体光伏效应的PT对称性。前者可以扭转奈尔磁矩,后者可以将反铁磁转化为铁磁。而这两种机理的产生机制也是不同的,前者对应于自旋体光伏效应中的线偏注入电流和圆偏位移电流,后者对应自旋体光伏效应中的线偏位移电流和圆偏注入电流。 结合理论分析,文中也以双层反铁磁 $\mathrm{CrSBr}$ 和 $\mathrm{CrI}_\mathrm{3}$ 为例分别计算了这两种体系中的光激发奈尔自旋流。输运计算使用了 QuantumATK 中第一性原理结合量子输运的模块,该模块可以计算在一阶波恩近似的精度下,体系在光照后产生的光电流以及其自旋分量。同时,此项研究也表征了双层反铁磁 $\mathrm{CrSBr}$ 中电激发的奈尔自旋流和其产生的分层的自旋转移矩。 该工作以“Light-Assisted Néel Spin Currents in PT-symmetric Antiferromagnetic Semiconductors“ 发表在Physical Reviews B。 图1。a,奈尔自旋流的示意图。b, 电激发奈尔自旋流。c, 光激发反平行自旋流。d, 光激发交错自旋流。 图2。双层反铁磁 $\mathrm{CrSBr}$ 中的光激发奈尔自旋流,此时由于镜面对称性系统只保留了PT-odd的成分。此时可以看到不同自旋极化的电流是在空间上分层的,并且不同层的自旋极化电流是自旋相反并且反向移动的。 图3。双层反铁磁 $\mathrm{CrI}_\mathrm{3}$ 中的光激发奈尔自旋流,此时由于镜面对称性被打破,因此奈尔自旋流同时保留了PT-odd和PT-even的成分。此时可以看到光激发奈尔自旋流同时包括了在不同层沿着相反方向和相同方向移动的自旋极化电流。 总结 在这项工作中,作者提出可以通过光激发的方式也能在 PT 系统中产生奈尔自旋流。这种光激发的 Néel 自旋电流包括沿不同磁亚晶格分布的交错或反平行自旋电流,取决于其相应自旋光电极系数的 PT 对称性。在半导体中光激发的 Néel 自旋电流多样表现的起因在于 spin photogalvanic 效应本身是非线性的,因此其对应的自旋极化电流不一定是PT-偶的。以 和 $\mathrm{CrI}_\mathrm{3}$ 为例,作者使用QuantumATK 软件中的第一性原理计算结合量子输运方法验证了上述理论。此工作工作提出了可以利用光电相互作用实现反铁磁存储器的写入功能。 参考 […]

范德华多铁隧道结中面向存算一体的磁电协同控制多级导电态(Nanoscale 2024)

Posted · Add Comment

研究简介 范德华多铁隧道结有望实现小型化、高密度和非易失性存储,在下一代数据存储和存算一体器件中具有巨大应用潜力。福州大学材料科学与工程学院萨百晟课题组联合北京航空航天大学和华中科技大学,采用结合密度泛函理论与非平衡格林函数结合的计算方法,模拟了由铁磁半金属材料 $\mathrm{Mn}_2\mathrm{Se}_3$ 作为自旋过滤势垒,金属材料 $\mathrm{Ti}\mathrm{Te}_2$ 作为电极,铁电材料 $\mathrm{In}_2\mathrm{S}_3$ 作为隧道势垒组成的范德华多铁隧道结器件的自旋输运性质。器件采用双层 $\mathrm{In}_2\mathrm{S}_3$ 作为隧道势垒时可以同时实现显著的隧道磁阻和隧道电阻效应,在非零偏压下,最大隧道磁阻和电阻比率分别可达6237%和1771%。进一步发现在该多铁隧道结内存在四种可区分的电导状态,即仅需一个多铁隧道结单元就可实现四态非易失性数据存储。且通过等效的磁、电开关可以分别控制器件电流的通断和大小,通过搭建多铁隧道结阵列可同时实现逻辑计算和多级数据存储。这些研究结果揭示了该隧道结在存算一体以及多级数据存储器件中的潜在应用。福州大学材料科学与工程学院博士研究生崔舟为第一作者。该研究得到了国家重点研发计划与国家自然科学基金的资助支持。 研究内容 利用QuantumATK软件,以单层铁电材料 $\mathrm{In}_2\mathrm{S}_3$ 作为势垒层,具有金属性质的 $\mathrm{Ti}\mathrm{Te}_2$ 作为电极材料,搭建了如图1所示的器件模型,图1(a)和(b)中显示了 $\mathrm{In}_2\mathrm{S}_3$ 的两种不同极化方向的情况,在考虑铁磁层磁矩的方向后,单层 $\mathrm{In}_2\mathrm{S}_3$ 器件理论上可以实现四种导电状态。图1(c-f),进一步计算了器件不同状态下的透射系数曲线和费米面处的透射谱,并且统计了各种状态下的费米面出的隧穿磁阻率和隧穿电阻率。对于单层 $\mathrm{In}_2\mathrm{S}_3$ 器件最大可以实现448%隧穿磁阻率,但是其最大的隧穿电阻率仅有30%。 图1 单层 $\mathrm{In}_2\mathrm{S}_3$ 作为隧道势垒的多铁隧道结在(a)FE-R-1IS和(b)FE-L-1IS状态下的结构示意图。(c)FE-R-1IS和(d)FE-L-1IS状态下多铁隧道结自旋分辨的零偏压透射系数曲线。(e)FE-R-1IS和(f)FE-L-1IS态下多铁隧道结自旋分辨的透射谱。 将单层 $\mathrm{In}_2\mathrm{S}_3$ 势垒层替换为双层 $\mathrm{In}_2\mathrm{S}_3$ 后,如图 2 所示,不同状态下的透射系数曲线和费米面处的透射谱具有更明显的差异。对于双层$\mathrm{In}_2\mathrm{S}_3$ 器件可以实现最大的隧穿磁阻率为5698%,最大隧穿电阻率为1771%。从费米能级处的透射谱可以得知,高的隧穿磁阻率和隧穿电阻率主要是由于平行磁阻态下的自旋向上电子的透射能力具有显著差异。 图2 双层 $\mathrm{In}_2\mathrm{S}_3$ 作为隧道势垒的多铁隧道结在(a)AFE-T-2IS,(b)AFE-H-2IS,(c)FE-R-2IS和(d)FE-L-2IS状态下的结构示意图。(e)AFE-T-2IS,(f)AFE-H-2IS,(g)FE-R-2IS和(h)FE-L-2IS态下多铁隧道结自旋分辨的零偏压透射系数曲线。(i)AFE-T-2IS,(j)AFE-H-2IS,(k)FE-R-2IS和(l)FE-L-2IS态下多铁隧道结自旋分辨的透射谱。 为了进一步探究这种差异的原因,计算了双层 $\mathrm{In}_2\mathrm{S}_3$ 作为隧道势垒的多铁隧道结在各种状态下 $\mathrm{Mn}_2\mathrm{Se}_3$ 和 $\mathrm{In}_2\mathrm{S}_3$ 层的态密度。从图3中可知,由于受到 $\mathrm{Mn}_2\mathrm{Se}_3$ 铁磁层的影响,$\mathrm{In}_2\mathrm{S}_3$ 层在费米面处产生了新的态密度,这是造成器件导电能力不同的主要原因。最后本文阐述了器件可能应用的方向。双层 $\mathrm{In}_2\mathrm{S}_3$ 器件的八个导电状态可以简并为如图4(a)所示的四种可显著分辨的导电状态,仅用两个隧道结单元就可以实现十六种存储状态,用于多态存储,如图4(b)所示。另外,可以将一个隧道结单元等效成为一个磁电开关,用磁场开关控制电路的通断,电场开关控制电流的大小,如图4(c)所示。将多个隧道结单元排列成如图4(d)所示的 N×N 阵列,在输入端加一系列电压,根据基尔霍夫定律和欧姆定律,在输出端可以得到一系列电流,从而完成一次乘法累加运算。由于每个多铁隧道结本身具有数据存储的能力,这样就可以将“存”和“算”集成在同一器件单元上,实现存算一体。 图3 双层 $\mathrm{In}2\mathrm{S}_3$ 作为隧道势垒的多铁隧道结在(a)AFE-T-2IS,(b)AFE-H-2IS,(c)FE-R-2IS和(d)FE-L-2IS状态下各个 $\mathrm{Mn}_2\mathrm{Se}_3$ […]

磁性与自旋电子学研究案例集(四)

Posted · Add Comment

范德华${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$异质结构中磁相互作用的调节:从头算方法的比较研究 作者研究了机械应变、堆叠顺序和外部电场对二维(2D)范德华异质结构的磁相互作用的影响,其中二维铁磁性金属 ${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$ 单层沉积在锗烯上。使用了三种基于从头算方法的不同计算方法,(i)格林函数方法,(ii)广义布洛赫定理,和(iii)超胞方法,并进行了仔细的比较。首先,计算了独立${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$单层晶胞内三个Fe原子的壳层分辨交换常数。作者发现,用方法(i)和(ii)获得的结果在质量上是一致的,并且与以前报道的值在质量上也是一致的。垂直于${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$/锗烯异质结构施加 E=±0.5V/Å 的电场会导致交换常数的显著变化。结果表明,${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$/锗烯中的Dzyaloshinskii-Moriya相互作用(DMI)主要由最近邻主导,导致方法(i)和(ii)之间的定量一致性良好。此外,作者证明了DMI可通过应变、堆叠和电场调节,从而产生铁磁/重金属界面相当的大DMI,铁磁/重金属界面已被公认为承载孤立skyrmions的典型多层体系。几何变化和杂化效应解释了DMI在界面处的高可调性的起源。通过方法(iii)获得的电场驱动DMI与方法(ii)中使用的更精确的从头算方法在质量上一致。然而,方法(iii)高估了DMI的场效应约50%。这种差异归因于方法(ii)和(iii)中应用的从头计算方法中使用的电场和基组的不同实现方法。磁各向异性能(MAE)也可以通过在${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$/锗烯异质结构中施加压缩或拉伸应变而显著改变。相反,对于高达 1V/Å 的电场,施加电场只会导致MAE发生相对较小的变化。 Li, D.; Haldar, S.; Drevelow, T.; Heinze, S. Tuning the Magnetic Interactions in van Der Waals ${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$ Heterostructures: A Comparative Study of Ab Initio Methods. Phys. Rev. B 2023, 107 (10), 104428. https://doi.org/10.1103/PhysRevB.107.104428. 通过相邻掺杂策略引入六方氮化硼的可调谐d0磁性 为了满足由于不断进步的自旋电子学对稀磁半导体(DMS)的需求,设计具有高稳定性、自旋极化和居里温度的d0-DMS是至关重要的。目前引入d0磁性的研究仅限于单原子掺杂,缺乏对局部磁矩和长距离磁耦合的调控措施。在此,采用相邻掺杂策略来引入用于调节d0-DMS的磁性能的自由度。作者观察到,通过分别引入Si和O原子作为中心和相邻掺杂剂,本征非磁性六方氮化硼(h-BN)表现出显著的局部磁矩。此外,还观察到掺杂h-BN的电离能、总磁矩、磁耦合和居里温度对Si–O配位敏感。随后,通过高Si–O配位掺杂设计了具有高热稳定性、100%自旋极化、长程铁磁耦合和高居里温度的磁性半金属(Si–O3掺杂的h-BN)。本研究以Si–O相邻掺杂h-BN的设计为例,提出了一种引入可调谐d0磁性的可行方法。 Wang, B.; Ning, J.; Zhang, J.; Wang, D.; Zhang, C.; Hao, Y. Tunable […]

石墨醚纳米带中优异的自旋热电表现【QuantumATK亮点文章】

Posted · Add Comment

背景 在自旋相关塞贝克效应(SDSE)中,自旋向上和自旋向下的电子在温度梯度的驱动下沿相反的方向流动,使电荷电流相互抵消,可以在器件中产生纯自旋流。作为一种制造自旋流的高效途径,近年来二维材料中的SDSE被广泛研究,如石墨烯、氮化硼、硅烯、磷烯等。人们一直致力于寻找自旋热电表现更出色的材料平台。 研究内容 作者基于新型二维材料石墨醚的纳米带结构设计构建了两类自旋热电器件,独特的能带结构及输运性质使其在热梯度之下可以产生纯自旋流。 图1 (a) 扶手椅边缘石墨醚纳米带 (AGENR) 的结构图,数字表示纳米带宽度。 (b、c) I型和II型AGENR纳米带的结构,自旋密度分布证实其边缘成功引入了磁性。(d、e)AGENR自旋热电器件的示意图,冷热端的温差为ΔT。 图2  AGENR的 (a) 能带结构和 (b) 透射谱。 (c、d) SDSE的形成机制,自旋向上和向下的电子具有符号相反的电流谱,表征其形成反向的电流。 第一性原理计算表明器件的SDSE对纳米带宽度具有鲁棒性,并表现出高自旋塞贝克系数和巨大的自旋热电优值。 图3 基于不同宽度的I型和II型AGENR器件的热致电流,表现出鲁棒的SDSE。 图4  AGENR器件的(a-d)自旋依赖塞贝克系数和(e、f)自旋热电优值。 小结 本文设计了两类基于石墨醚纳米带(AGENR)的自旋热电子器件,并通过第一性原理计算证实了其优异的自旋热电性能,在自旋热电子学中具有良好的应用前景。 参考文献 Yue Jiang, Yan-Dong Guo, Li-Yan Lin, and Xiao-Hong Yan, A robust spin-dependent Seebeck effect and remarkable spin thermoelectric performance in graphether nanoribbons. Nanoscale, 2022, 14, 10033-10040. https://doi.org/10.1039/d2nr02175g(杂志封面文章) 感谢南京邮电大学郭艳东老师课题组供稿!

稀土掺杂单层二硫化钨的电子和光学性质【QuantumATK亮点文章】

Posted · Add Comment

概述 此项研究了计算了含钬取代杂质(HoW)单层二硫化钨(WS2)的电学和光学性质。虽然 Ho 比 W 大得多,但使用包括自旋-轨道耦合的密度泛函理论(DFT)表明 Ho:SL WS2 是稳定的。自旋分辨 DFT 计算给出 Ho 杂质的磁矩为 4.75µB。在光谱中识别出的光学选择规则与用群论推导的光学选择规则完全匹配。中性杂质的存在导致了带结构中具有f轨道特征的局域杂质态(LIS)。利用 Kubo-Greenwood 公式计算得到的光学响应 χ‖ 和 χ⊥ 的平面内和平面外分量中获得了类似原子的尖锐跃迁,光学谐振峰与实验数据吻合良好。 研究内容 图1.(a)8×8×1 SL WS2 超胞中 HoW 杂质示意图。(b)本征 SL WS2 的能带和态密度,显示面内带隙 1.6 eV,面外带隙3.2 eV。 价带边缘由于自旋轨道耦合(SOC)发生了大小为 433 meV 的劈裂。DOS 中的灰色区域为总态密度,红线为 W 的 d 轨道;蓝线为 S 的 p 轨道,黑线为二者之和。(c)本征 WS2 的光学响应,显示了面内和面外的带隙。 图2. HoW 掺杂的 8×8×1 WS2 超胞的能带和态密度。灰色区域为总态密度,彩色曲线为态密度投影(蓝:Ho 原子的f轨道;绿:邻近 S 原子的 p 轨道;红:次紧邻 W 原子的 […]

磁性与自旋电子学研究案例集(三)

Posted · Add Comment

用 Y 位原子替代 Heusler 晶格实现自旋阀的巨磁电阻 ”全Heusler”自旋阀由两个半金属 Heusler 电极和一个非磁性 Heusler 隔断构成,其中包含两个对磁电阻有重要影响的界面。为了减少界面无序度,保护电极在同一区域的半金属性,作者提出了一种方案,通过替换半金属Heusler电极中的Y位原子来构建自旋阀,以获得基于 Slater–Pauling 规则的相应非磁性隔断结构。这样,可以自然地确保两种材料的晶格和带匹配。以 Co2FeAl 为电极,Co2ScAl 为间隔材料,构建了Co2FeAl/Co2ScAl/Co2FeAl(001)自旋阀。基于第一性原理计算,从声子谱和形成能两方面确定了当间隔基 Co2ScAl 生长在电极材料 Co2FeAl 终止的(001)表面时,FeAl/CoCo 界面最稳定。通过将界面原子的投影态密度与体电极材料的相应态密度进行比较,只有Al的自旋上升态值在置换前后从 0.17 态/原子/eV变为 0.06 态/原子/eV,界面处的半金属丰度保持不变。结果表明,自旋相关的输运性质显示出显著的理论磁电阻 MRop,可以达到1010%,远大于以前报道的106%。(Zhang, Lei, Binyuan Zhang, Liwei Jiang, and Yisong Zheng. “Giant magnetoresistance in spin valves realized by substituting Y-site atoms in Heusler lattice.” Journal of Physics: Condensed Matter 34, no. 20 (2022): […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •