磁性和自旋电子学案例集(六)

Posted · Add Comment

具有高隧穿磁阻比的Co2FeAl Heusler合金和WSe2 2D材料磁隧道结   本文提出了一种基于 Co2FeAl Heusler 合金和二维材料 WSe2 的磁隧道结(MTJ),通过采用密度泛函理论(DFT)模拟和非平衡格林函数(NEGF)传输模型,评估了 Co2FeAl/WSe2/Co2FeAl MTJ 的导电性能。研究表明,Co2FeAl 合金作为磁性电极,结合具有优良电学性质的 WSe2 作为隧道屏障,可以显著提高隧穿磁阻(TMR),使得该结构在自旋电子学和下一代信息存储设备中具有广阔的应用前景。(Journal of Magnetism and Magnetic Materials, 2024, 606: 172365. DOI:10.1016/j.jmmm.2024.172365) 过渡金属原子掺杂氢化硅量子点的自旋滤波与量子输运 自旋滤波是自旋电子学中的一项基本操作,它使自旋极化载流子的产生和检测成为可能。本研究提出并从理论上证明了三维过渡金属(TM)掺杂氢化硅量子点(TM:H-SiQD)是自旋滤波器器件的合适候选材料。利用密度泛函理论研究了 TM: H-SiQD 的结构、电子性质和磁性行为,计算表明 Mn:H-SiQD 具有最高的稳定性。所设计的 Mn:H-SiQD 自旋滤波装置在 300 K 电极温度下具有 99.9% 的自旋滤波效率和很高的导电性。这种显著的效率使其成为自旋电子器件的有前途的候选者。(Applied Physics Letters 2024, 125(12) DOI:10.1063/5.0231931) 通过与CrI3分子的耦合调节锯齿形磷烯纳米带的电子输运性质 基于密度泛函理论(DFT)和非平衡格林函数(NEGF)方法,考虑了三种不同的吸附模型,研究了与三碘化铬(CrI3)分子耦合的锯齿形磷烯纳米带(ZPNRs)的自旋相关电子输运性质。发现由于 ZPNR 和 CrI3 分子之间的耦合,ZPNR 的电子输运表现出自旋极化特性。此外,负差分电阻(NDR)特性可以从电流-电压曲线中观察到,并通过吸附分子进行调制。还发现,垂直吸附在 ZPNRs 表面的 CrI3 比其他两种情况具有更高的自旋极化效率。(Physics Letters A, […]

界面化学助力突破二维半导体接触电阻瓶颈

Posted · Add Comment

概述 随着摩尔定律逐渐逼近物理极限,二维半导体材料因其原子级厚度和优异的电学性能,成为下一代电子器件的热门候选材料。然而,二维半导体器件的性能提升面临一个重大挑战:金属与半导体之间的接触电阻问题。传统的金属-半导体接触方式通常会导致金属诱导间隙态(metal-induced gap states, MIGS)和缺陷诱导间隙态(defect-induced gap states, DIGS),形成肖特基势垒,导致接触电阻高,严重限制了器件性能的提升。尽管范德华 (van der Waals, vdW) 接触可以避免金属诱导间隙态,但由于其较弱的相互作用,难以实现低接触电阻和高电流密度。为了克服上述挑战,本研究基于此前构建的氢键接触理论模型(Mater. Horiz., 2023, 10, 5621-5632),通过在三维金属与二维半导体之间引入纳米限域极化水分子来增强界面作用,并利用界面化学调控接触性质。 图1. 金属/单层 MoS2 范德华异质结在有无水插层时的接触对比图 图2.金属/水/MoS2 固液范德华异质结中的界面偶极和费米能级钉扎效应 研究内容 界面偶极子效应:本研究通过第一性原理计算发现,金属表面纳米限域水分子的极化方向与金属功函数密切相关。不同功函数的金属(Sc、Al、Cu、Pd、Pt)与水分子接触时,水分子的极化方向不同,但所有金属的有效功函数均降低。 费米能级钉扎效应:极化水分子的引入导致显著的界面偶极子效应,显著改变了金属与半导体之间的接触电势差,导致强烈的费米能级钉扎效应。与传统的 MIGS 和 DIGS 引起的费米能级钉扎不同,这种效应主要源于界面偶极子对接触电势差的屏蔽作用。 图3. 具有共价接触、范德华接触和水插层接触的Al/MoS2异质结的电子结构对比 图4. 有无水插层的Al/MoS2 vdW 异质结中的界面相互作用和传输特性 化学反应及动力学:利用 climbing image nudged elastic band(CI-NEB)方法研究了固液 vdW 异质结的化学反应动力学和热力学稳定性,量化了异质结处于不同温度下的接触性能。 图5. 水分子在铝(111)表面解离吸附的动力学过程及反应产物的电子特性 n型欧姆接触:对于铝(Al)与单层二硫化钼(MoS2)之间的接触,极化水分子的存在导致显著的界面电荷转移和氢键增强的共振隧穿效应,使得接触电阻大幅降低,从而实现 n 型欧姆接触。 亚5纳米接触长度:由于接触电阻的显著降低,铝/水分子/MoS2 接触的接触长度可以缩小到亚5纳米级别。具体来说,Al-OH/MoS2 触点有望在 1.7 nm 和 5 nm 接触长度时分别实现低至 107 Ω μm 和 66 Ω μm 的接近理想的接触电阻,这对于未来器件的小型化具有重要意义。 图6. 二维半导体接触电阻的基准测试 总结 在这项研究中,我们强调了固液范德华异质结的界面化学变化作用,特别是在调节二维材料的电子特性方面。之前的研究表明,范德华接触可以避免金属诱导的间隙态,而本研究则证明,由纳米限域极化水分子产生的界面偶极子可以显著影响二维材料的固有接触电势差,从而导致费米能级钉扎效应。研究结果表明,冰状水双分子层的极化取向与接触金属的功函数之间存在很强的相关性,从而导致电子行为的明显变化。此外,固液界面中涉及的物理化学相互作用为在二维晶体管中实现工程欧姆接触和有效电荷转移掺杂提供了启示。铝与纳米限域水的相互作用促进了其与 MoS2 的牢固氢键结合,从而实现了亚 5 […]

基于ReaxFF的分子动力学模拟钾对蛋白质热解过程中氨气生成的影响(Energy 2024)

Posted · Add Comment

相关背景 热解技术作为生物质处理领域的尖端技术,能够将生物质原料高效转化为高价值的固体、液体及气体产品,这些产品可作为生物基燃料及材料加以利用。然而,关于碱金属元素钾在生物质热解过程中氮迁移的研究相对较少,且大多局限于实验范畴,特别是对于生物质中氮元素的主要载体——蛋白质的热解氮转化机制,目前尚未明确。东北电力大学郭帅和燕山大学赵登研究团队合作探究了钾对蛋白质热解过程中氮迁移路径的影响,特别是涉及氨气(NH3)的复杂过程。研究表明,钾的加入增强了蛋白质的裂解活性,加速了裂解进程及氮转化速率;同时,钾改变了气态氮的来源途径,使原本主要源自焦油氮的二次裂解路径转变为焦炭氮的直接转化;此外,钾还影响了NH3的产量变化:促进了脱水反应,导致氮氢键的断裂;促使NH3在热解后期参与其他含氮分子的生成反应,尤其是HCN;并促进了蛋白质热解过程中产生的大量HCN分子发生脱H过程,形成CN自由基,进而与NH3反应,生成新的化合物。 AMS 模拟 利用AMS软件及其ReaxFF模块,对蛋白质体系及蛋白质与K2O团簇共热解体系进行了分子动力学模拟,并对所得结果进行了对比分析。具体而言,首先构建了K2O团簇模型:先形成K2O的分子晶体结构,进而生成超级晶胞。在超级晶胞内,选定超胞中心原子,设定半径参数为9 Å,据此成功构建了半径为9 Å的K2O团簇。随后,对该团簇进行了能量最小化计算,确保其结构稳定性。模拟过程中,采用了NVT系综。鉴于K2O团簇密度相对较低,因此将两个系统分别置于边长为65 Å的立方盒子中,以确保系统密度相近。在模拟过程中,每个反应系统首先在300 K条件下进行20 ps的弛豫处理,随后在600 K至2500 K的宽广温度范围内进行1000 ps的ReaxFF分子动力学模拟。为准确描述蛋白质/蛋白质与K2O团簇的反应体系,采用了CHONSSiCaCsKSrNaMgAlClIFLiX力场。 图1展示了不同温度条件下,三相氮产物转化率的变化情况。在此,转化率被定义为:在蛋白质及其与K共热解所得产物中,含氮焦炭、焦油及气体中所含氮元素总量,与原始蛋白质大分子中氮元素总量之比。根据图1所示数据,可以明确得出以下结论:K的添加能够显著提升蛋白质热解的反应速率;在600 K至1500 K的温度范围内,K的加入有助于增加气态氮的产率,这充分表明K对挥发物的二次裂解反应具有积极的促进作用。然而,当温度达到2000 K或2500 K这样的高温条件时,气态氮的产率却呈现下降趋势,这可能是由于在高温环境下,K的引入促进了蛋白质热解过程中生成的气态氮向多种含氮自由基(例如CN自由基)的转化。 图1 不同温度下蛋白质(a)及K和蛋白质共热解(b)产物中三相产物中氮的转化率 图2展示了在不同温度条件下,蛋白质及蛋白质与K共热解时NH3的释放曲线、产率以及通过实验验证的NH3强度曲线。根据图2的分析结果,可以明显看出,K的添加显著改变了NH3的演变趋势,使其由原本逐渐升高的状态转变为先升高后降低的趋势。同时,K的添加还导致了NH3产率的显著降低,这一发现已经通过相关实验得到了验证。这一结果表明,K的加入不仅促使NH3成为主要的生成物之一,同时也使其在反应过程中扮演了反应物的角色。 图2 单独的蛋白质热解(a)以及K和蛋白质的共热解(b)在不同温度下的释放曲线和NH3的产率(c),以及实验(d)中NH3形成的强度曲线 图3展示了在1500 K温度下,蛋白质及其与K共同存在时热解过程中化学键数量与分子数量随时间的变化情况。根据图3所示,K的参与显著加速了蛋白质分子结构的分解速率,并促使热解反应进行得更为完全;同时,K的加入导致蛋白质热解过程中氮氢键的数量变化趋势与前文所述K抑制NH3生成的结论呈现相反态势,两者之间存在紧密的关联性。 图3 1500K温度下蛋白质及 K 参与下蛋白质热解过程化学键的数量和分子数量随时间变化 图4 每 60ps 蛋白质和 K 参与下蛋白质热解过程的快照 图4 展示了每隔 60 ps 蛋白质和 K 与蛋白质共热解过程的快照,该快照进一步直观验证了前述结论,即K的引入加速了蛋白质的热解速率,并使得裂解过程更为彻底。图5则揭示了影响氮氢键变化,也即影响 NH3 生成的主要路径。在利用AMS软件输出的数据表格中,我们对蛋白质中的氮元素和氢元素进行了标记与追踪。通过对比蛋白质单独热解的体系,我们发现K的引入显著促进了蛋白质分子结构中碳碳之间氮原子上的氢原子形成稳定的水分子结构,并且使得热解产物NH3既作为反应物又作为生成物参与反应,即NH3结合小分子碎片发生再转化,主要生成HCN分子。这一发现进一步阐释了氮氢键减少、抑制NH3生成的主要原因。 图5 破坏氮氢键的主要途径 图6 温度为 1500K 热解过程中的三相产物中氮的分布 图 6 展示了在 1500 K […]

氧化石墨烯催化臭氧高级氧化过程中活性氧形成机理的探讨(Carbon 2024)

Posted · Add Comment

摘要 基于石墨烯催化剂的臭氧(O3)高级氧化工艺(AOP)作为一种高效的水体治理手段,探究其臭氧化的微观机理对环境治理具有重要意义。南京工业大学杨晓宁教授课题组,采用密度泛函(DFT)和反应分子动力学(ReaxFF)方法研究了氧化石墨烯(GO)表面多种含氧官能团的活性氧形成机制。 作者通过 AMS 软件中的 ADF 模块进行了一系列关于 O3 和含氧官能团的反应过渡态搜索,并采用隐式COSMO 溶剂化模型考虑了水溶液对反应过程的影响。反应路径和能量计算结果为多种含氧官能团的反应提出可行的臭氧化机制,可以更好的解释目前关于 GO 催化臭氧化的实验现象。作者进一步使用 ReaxFF 模块对 GO/O3/H2O 系统进行了多次动力学模拟,GO表面的含氧官能团与 O3 的反应过程被清晰的观察到。此外模拟过程中多种活性物种数量的时间演变也被统计。这些结果与 DFT 计算和实验数据较好吻合,进一步证实了文章提出的臭氧化机制的正确性。 参考文献 Huipeng Wang, Zhijun Xu, Xiaoning Yang, Probing the formation mechanisms of reactive oxygen species in graphene oxide-catalyzed ozone advanced oxidation processes, Carbon, 2024, 119831 感谢王慧鹏博士供稿!

单元素二维铁电BP-Bi光电探测器的第一性原理研究

Posted · Add Comment

研究背景 光电能量转换是凝聚态物理学中一个至关重要的研究领域。由于电磁场中电场的交替性质,仅依赖线性效应无法在单一材料中产生直流电。为通过光激发在单一材料中诱导直流电,必须考虑非线性效应或高阶相互作用。例如,体光伏效应(PGE)是一种二阶扰动的非线性光电效应,能够在缺乏空间反演对称性的内在材料中诱导直流电流。PGE 探测器不但能够吸收能量低于半导体带隙的光子并产生远高于半导体带隙的开路电压,且光电流探测器不需要构建异质结,减少了生产成本和工艺复杂性。基于PGE制成的光电探测器被认为是下一代纳米光电设备的有前途的候选者。 铁电材料因其缺乏空间反演对称性和铁电可调性而成为先进光电流探测器的理想候选者。最近在二维范德瓦尔斯铁电类黑磷铋(BP-Bi)中实验性观察到了单元素铁电态,其铁电性的起源是由于 Bi 原子的非对称构型,这种构型是由晶格固有的非对称折叠引起的。与大多数具有大带隙的内在铁电材料相比,显示出其独特的性质。这些新颖和独特的特性使得BP-Bi成为极具研究价值的铁电材料。 研究内容 近日,湖北民族大学李强副教授、北京大学吕劲教授及方世博博士等,基于单元素二维铁电材料 BP-Bi 设计了一种光电探测器,利用 QuantumATK 进行了第一性原理计算。该材料的光电探测的光电流具有明显的各向异性(Armchair 方向的最大光电流能达 133 mA/W,而 Zigzag 方向的最大光电流仅为 4.7 mA/W)。 图1 (a)单层 BP-Bi 沿 armchair 方向的原子结构 (b)单层 BP-Bi 光电探测器沿 armchair 和 zigzag 方向光电响应随能量变化曲线 (c)单层 BP-Bi 光电探测器与其他单层材料的 p-n 结的最大光电响应对比图 结论 本研究展示了基于单元素二维铁电材料 BP-Bi 的光电探测器的设计与性能评估,强调了其在光电能量转换领域的重要性。通过第一性原理计算,我们发现 BP-Bi 的光电流效应具有显著的各向异性,尤其在Armchair 方向展现出高达 133 mA/W 的光电流,这表明其在光电探测应用中的巨大潜力。这一成果不仅为光电流探测器的开发提供了新思路,也为铁电材料在纳米光电设备中的应用奠定了基础。BP-Bi 的低带隙特性和优异的光电性能,使其成为未来光电探测器研究的有前景材料,预示着在光电能量转换领域可能的技术突破与应用前景。 参考文献 Photodetector Based on Elemental Ferroelectric Black Phosphorus-like […]

AMS 应用于燃烧/热解案例合集(四)

Posted · Add Comment

基于ReaxFF分子动力学的不同阶煤分子指标气体生成规律(内蒙古科技大学) 为了获得不同煤阶煤在自然氧化过程中的指标气体生成特征和差异,选择了代表四个煤阶的五个煤样进行研究。建立了煤的分子模型,并使用 ReaxFF 力场进行了分子动力学模拟,结合煤样的加热实验,得出了指标气体 C2H4, C2H2, CO, 和 CO2 的宏观和微观生成规律。研究表明,在煤的自燃过程中,C2H4 和 C2H2 主要取决于脂肪族侧链的数量,而CO和 CO2 主要取决于煤分子中的碳原子。当氧化自燃达到后期阶段时,C2H4, C2H2, 和 CO 转化为 CO2,即燃烧的完全产物。指示气体的初始温度和峰值按煤阶顺序排列。不同指数气体的出现顺序为 CO2, CO, C2H4, 和 C2H2。该研究在确定采空区内适当的氧化诱导自燃指标气体方面起着关键作用,从而为后续制定全面的矿井防火和灭火策略提供了理论依据。 Index gases generation law of different rank coal molecules based on ReaxFF molecular dynamics, Jing Zhang erc., Materials Today Communications, 2024, 40, 109760, DOI: 10.1016/j.mtcomm.2024.109760 矿物油热解过程中多环芳烃形成机理的ReaxFF分子动力学研究(华中科技大学) 通过热解回收废矿物油是一种灵活有效的方法。然而,在此过程中可能会产生具有高毒性的多环芳烃(PAHs)。本研究试图通过 ReaxFF 分子动力学(MD)模拟揭示矿物油热解过程中矿物油的演化过程和多环芳烃的形成机制。此外,还探讨了加热速率(10 K/ps、100 K/ps和1000 K/ps)、温度(2200~3200 K)、矿物油成分(环烷烃和芳烃含量)和大气(CO2)影响多环芳烃形成的原理。 观察到矿物油的两阶段热解演化,第一阶段分解,随后发生聚合反应。高温可以使热分解快速转化为聚合反应阶段。通过跟踪关键中间体/产物和芳香结构的演变,发现氢提取乙烯基自由基加成(HAVA)反应在矿物油热解过程中主导了多环芳烃的形成。此外,碳簇上支链基团的缩聚环化对大分子多环芳烃的形成做出了相当大的贡献。乙烯基自由基加成和缩聚脱氢是矿物油热解过程中多环芳烃形成的两个标志性反应。矿物油中芳烃组分对多环芳烃形成的贡献约为环烷烃组分的 6.5 倍。CO2可以通过中间体/产物的氧化以及随后乙烯基/乙炔加成反应对脱氢的抑制来减少多环芳烃的形成。 […]

AMS 应用于燃烧/热解案例合集(三)

Posted · Add Comment

ReaxFF分子动力学研究α-CPP和β-CPP燃料的热解机理(天津大学) 具有高密度和高比冲的新型燃料分子是航空航天燃料的理想替代品,了解它们的燃烧或热解化学是成功应用的必要条件。作者使用 ReaxFF MD 研究了新型燃料分子环丙烷化 α-蒎烷(α-CPP)和环丙烷化 β-蒎烯(β-CPP)的热解。结果表明,燃料分子的初始热解主要通过三个步骤完成:三元环中的 C 单键断裂形成二自由基,四元环发生开环反应形成内部具有环状结构和双键的二自由基;六元环向三烯烃分子或具有不饱和键的二自由基开环。在 α-CPP 和 β-CPP 的初始反应中, C11H18 → •CH3 + •C10H15 和 C11H18 → •C6H9 + •C5H9 分别占主导地位。进一步分析表明,C5H9 和 C6H9 自由基是热解过程中的重要中间体。动力学计算表明,α-CPP 和 β-CPP 分子的活化能分别为 51.44 kcal/mol 和 49.14 kcal/mol,小于 JP-10、RP-1和其他燃料的活化能。这项工作为在原子水平上揭示高能燃料分子 α-CPP 和 β-CPP 热解的整体反应机理提供了理论基础。 Pyrolysis mechanism of α-CPP and β-CPP fuels by ReaxFF molecular dynamics, Menghui Chen, etc., Computational and Theoretical Chemistry, 2024, Volume 1240, […]

AMS 应用于燃烧/热解案例合集(二)

Posted · Add Comment

添加2,5-二甲基呋喃对正庚烷/异辛烷的碳烟纳米结构演变分析:实验研究与ReaxFF MD模拟(安徽工业大学) 生物燃料作为一种可再生能源,其性质与普通汽油和柴油非常相似。呋喃类生物燃料作为最具代表性的第二代生物燃料具有众多优点,如生产原料主要为纤维素而非粮食以及油料作物,不会与国家粮食保障的规定形成矛盾,并且此类生物燃料与石油的能量密度相当,这样将其与石油燃料混合不会引起发动机性能结构的重大改变。2,5-二甲基呋喃 (DMF) 是一种典型的呋喃类生物燃料,具有许多优点:能量密度与汽油相似、高沸点以及不溶于水等。基于此,本文主要进行DMF对正庚烷/异辛烷的碳烟纳米结构演变研究。 结合层流扩散燃烧实验,本文采用 AMS 软件中 ReaxFF MD方法模拟研究了2,5-二甲基呋喃掺混对正庚烷/异辛烷的碳烟纳米结构演变。 研究表明,随DMF掺混比的增加,正庚烷/异辛烷的层流扩散火焰高度逐渐升高。在高度一致的情况下,采集到的初级碳烟颗粒数量先减小后增加;初级碳烟颗粒的尺寸也随着DMF掺杂比的增大先增大后减小。透射电子显微镜(TEM)分析表明,DMF最初抑制了正庚烷/异辛烷火焰中初级碳烟颗粒产生,随后又促进了其生长。随着DMF掺混比的增加,核壳比先增大后减小,这表明碳烟的成熟度先减小后增大。在ReaxFF MD模拟中,掺混了DMF的正庚烷/异辛烷热解过程分为:燃料在第一阶段分解,在第二阶段发生剧烈反应。碳烟前驱体持续发生反应,分子尺寸不断增大,多环芳烃(PAHs)持续增加。第三阶段,最大分子的含碳原子数缓慢增加,碳烟发展进入成熟阶段,H/C比值缓慢下降。通过ReaxFF MD模拟发现,随着DMF掺混比的增加,碳烟的成熟度呈现先减小后增大的趋势。类石墨烯结构主要集中在H/C比为0.297的区域。 Analysis of the nanostructure evolution of soot in n-heptane/iso-octane with 2,5-dimethylfuran addition: A combined experimental study and ReaxFF MD simulations, W. Dong, R. Hong, Y. Yang, D. Wang, B. Qiu, H. Chu, Combustion and Flame, 2024; 270: 113751. DOI: 10.1016/j.combustflame.2024.113751 基于分子反应动力学对炭-H2O/CO2气化过程中钙物种催化机理的洞察(宁夏大学) 钙在炭气化过程中具有一定的催化作用,并影响气化产物的分布和组成。因此,深入了解钙在气化过程中的反应性质和机理对气化过程具有重要意义。反应力场分子动力学(ReaxFF […]

AMS 应用于燃烧/热解案例合集(一)

Posted · Add Comment

微量水对C4F7N/CO2/O2混合气体热分解特性的影响机理(湖北工业大学) C4F7N/CO2/O2 三元气体混合物具有优异的环境和绝缘性能,已成为 SF6 最有前景的替代品之一,并在全球电力系统中得到了初步应用。目前,关于设备中 C4F7N/CO2/O2 在微含水量下长期运行的稳定性研究有限。本研究使用 ReaxFF 力场进行反应分子动力学模拟,在微观水平上研究水(高达 2%)对 C4F7N/CO2/O2 热分解特性的影响。此外,还进行了 C4F7N/CO2/O2 在不同微水浓度下的热分解实验,以分析分解产物与微水含量之间的关系。 当微水浓度低于 1.6% 时,H2O 促进 O 自由基的产生,增加 C4F7N 的分解。然而,随着 H2O 浓度的进一步增加,大量产生的 OH 自由基消耗 O 自由基,抑制 C4F7N 的主要分解反应。实验结果表明,气体混合物的主要热分解产物是CF4、C3F8、C3F6、C2F6 和 CHF3。本研究的结果,为提高 C4F7N/CO2/O2 绝缘设备在长期工程应用中的可靠性提供了理论支持和技术基础。 Mechanism of the Effect of Micro-Water on the Thermal Decomposition Characteristics of C4F7N/CO2/O2 Gas Mixture, F. Ye et al., IEEE Transactions on Dielectrics and Electrical […]

AMS 应用于发光显示材料研究案例集(三)

Posted · Add Comment

第二激发态三重态通过热激活反向内转换促进 TADF 和三重态-三重态湮灭光子上转换 近年来,由于 TADF 材料的高激子利用效率、低生物毒性等,TADF 有机发射体数量激增。然而现有的 TADF 通道在设计高性能材料方面还不够完善,特别是高位三重态介导的反向系间交叉过程。本文报道了一种热激活的反向内转换(TARIC)途径,该途径可以通过势能面锥形交点,实现从 T1 状态到 T2 状态的有效转移,势垒为 3.81 kcal mol−1。 在此基础上,介导的 T2 态促进了 TADF 和三重态-三重态湮灭光子上转换(TTA-UC)通道。此外,得益于TARIC途径,设计的 2′,7′-二氯荧光素(DCF)衍生物 DCF-MPYM-Me 光敏剂具有 13.6% 的优异上转换效率,高上转换效率对不含重原子的纯有机 TTA-UC 体系 TADF 光敏剂来说至关重要。 The Second Excited Triplet-State Facilitates TADF and Triplet–Triplet Annihilation Photon Upconversion via a Thermally Activated Reverse Internal Conversion, Yanliang Zhao, Yingnan Wu, Wenlong Chen, Ruiling Zhang, Gaobo Hong, Jiarui Tian, Honglei […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •