SimpleWare教程:纤维分析

Posted · Add Comment

Simpleware 软件中包含许多有助于分析纤维数据的工具,主要用于理解取向分布和计算各种统计数据。本教程将展示无需单独进行图像分割的纤维分析核心功能。 数据来源:Simpleware 软件数据文件夹 FibreOrientation 1. 背景图像中心线 1.1 准备数据 打开 Fibres.sip 项目文件,3D 视图自动生成体积渲染模型 图1:Simpleware ScanIP 中生成的纤维材料体积渲染模型 1.2 由背景图像生成中心线 打开 Measurements — Centrelines — Create centrelines 工具,确认 Input 是 Active background (Fibres),设置捕捉纤维中心的阈值范围为 128-255。(对于中空纤维,可能需要一些前处理,例如使用 Laplacian of Gaussian 滤波器。)通过计算穿过单个纤维的体素乘以体素间距设置接近于纤维直径的 Feature diameter (mm) 参数。针对本例数据,该值设为 0.03。勾选 Isolated lines (fibres),显示 Pruning sensitivity、Joining angle threshold 和 Remove short lines 的设置选项,保持默认即可。依次点击 Create 和 OK。放大 3D […]

微孔结构中速度和压力分布的孔隙级 CFD 研究

Posted · Add Comment

概述 多孔金属结构具有独特的高孔隙体积、高表面积和高杨氏模量的组合特性,广泛应用在与流体、热、压力波和机械冲击相互作用的材料中,适合作为各种工程和工业应用中的承重结构。典型的应用领域包含二氧化碳捕集和能量储存、过滤和减少废物、吸声、生物医学设备、能源(石油和天然气)和冶金加工。其他应用还包括如热交换器和吸声器的材料、水泥窑中的交换介质以及稠油和蒸汽辅助重力泄油(SAGD)技术中的下一代筛管材料。 本项目提出了一种基于微观尺度层析成像数据的孔隙结构表征和计算流体动力学(CFD)的建模方法,并模拟了流体在“真实”和“自适应”多孔金属结构中的流动分布。深入理解流体从达西到惯性的流动形态,并证实孔隙结构相关参数与多孔介质流体流动特性的关系。 亮点 在 Simpleware ScanIP 重建真实结构、创建“自适应”结构、表征孔隙;在 Simpleware FE 生成高质量的网格模型;在 Simpleware FLOW 模拟多孔介质流体流动特性,研究其与孔隙结构相关参数的关系。 图像获取 使用蔡司 Xradia Versa XRM-500 三维 x 射线 CT 显微镜获取高多孔金属样品的断层扫描数据集,材料为 Inconel 450 μm、Inconel 1200 μm、Recemat RCM-NCX 1723、Recemat RCM-NCX 1116 和 Porvair 7PPI 泡沫。 在 Simpleware ScanIP 中将 2D 灰度层析成像数据集渲染成 3D 结构,从大型样品中心截取一个 6-12 倍于结构平均孔径的长方体代表性体积单元(RVE)。阈值大小也会对微观结构的拓扑及宏观参数产生影响,处理后的 3D 代表性体积与完整样品的孔隙率最小偏差仅为 ±2 %。 图1:通过 CT 扫描重建 Inconel […]

芯片粘装用瞬时液相烧结铜-焊料-树脂微观结构的变形行为

Posted · Add Comment

概述 混合动力电动汽车和其他电力电子系统的快速发展增加了对功率模块中高可靠性键合技术的需求,电源模块要在高功率和高频率下运行,且具备高度集成性和小型化的特点。下一代半导体材料碳化硅(SiC)能够代替传统材料提供更低的功率损耗、更高的开关速度和工作温度。粘合层也暴露在很高的温度下,因此也应该提高接头的性能指标和可靠性。 本项目提出了一种利用 Cu 颗粒与 Sn 基焊料瞬时液相烧结(TLPS)的低温结合技术作为高温功率模块的贴片解决方案。铜-金属间化合物-树脂(Cu-IMC-resin)的微观结构由 Cu 颗粒与部分填充有聚酰亚胺树脂的 Cu-Sn 金属间化合物(IMCs)连接而成,采用新型铜-焊料-树脂复合材料作为氮气气氛中的接合材料通过 250℃ 下 1 分钟的无压 TLPS 工艺获得。然后利用三维图像重建模型的有限元分析评估 Cu-IMC-resin 独特微观结构的宏观和微观变形特性。 亮点 采用Cu 颗粒与 Sn 基焊料瞬时液相烧结(TLPS)的低温键合技术在 Simpleware 中处理Cu-IMC-resin的图像数据并生成高质量的网格模型在 ANSYS Workbench 中模拟微观结构的宏观和微观变形特性 图像获取 Cu-焊料-树脂复合材料是一种含有 Cu 颗粒、Sn-3Ag-0.5Cu(SAC305)焊料颗粒和聚酰亚胺(PI)热固性树脂的糊状物。Cu 颗粒和焊料颗粒的尺寸分别约为 10 µm和 3 µm,铜的重量百分比含量大约是焊料的三倍。使用 Cu-焊料-树脂复合材料将 SiC 芯片键合到直接键合铜(DBC)基板上,芯片尺寸约为 8 × 8 × 0.3 mm,表面镀有 Ni/Au 金属。DBC 基板由两个连接到 0.6 mm厚氮化硅(Si3N4)基板上的 0.3 mm铜电极组成。在氮气气氛中使用无压回流工艺在 100℃ 下预热 […]

单轴压缩作用下量化2D和3D裂缝对井筒水泥渗透率的影响

Posted · Add Comment

概述 作为天然气的主要成分,甲烷是导致全球变暖的主要因素之一。井筒水泥中的应力诱导裂缝会形成甲烷或二氧化碳泄漏的高风险通道,油气井的逃逸排放进而造成甲烷释放失控。因此,了解和减少泄漏途径对于最大限度地降低泄漏井对环境的影响至关重要。 本项目研究人员使用扫描电子显微镜(SEM)和显微计算机断层扫描(micro-CT)技术量化峰值压应力前后熟化高温触变水泥试样裂缝的 2D 和 3D 几何参数,提出一种量化应力诱导真实三维裂缝对水泥渗透率影响的模拟方法。 亮点 使用 SEM 图像量化 2D 水泥裂纹将水泥 micro-CT 图像导入 Simpleware 软件量化 3D 裂纹含纤维水泥可限制裂纹的大小和扩展2D 和 3D 裂缝分析方法为定量表征块体水泥中应力诱导裂缝的潜在过程提供了重要见解 单轴压缩试验 用 G 级水泥、40% 硅粉(按水泥重量计)、添加剂混合制备试样,水灰比为 0.48。固化后加工得到长 100mm,直径 50mm 的圆柱体。为研究纤维对改善水泥性能的影响,在相同的条件下还制备了两个含纤维的试样,按共混物的重量加入 0.25% 的纤维。然后采用 GCTS RTX-1000 测试系统进行单轴压缩测试,测量轴向和径向的应变。 图1:单轴压缩试验获得7个试样的应力应变曲线,其中试样A为对照;B和C为峰值前样品;D和E为峰值后样品;F1和F2为含纤维试样,分别被压缩到与D和E相同的应变水平。 与峰值后样品相比,含纤维试样在高应变时应力下降较慢且不明显。这表明含纤维试样比未改性的峰后样品具有更好的延展性,在相同应变条件下断裂会更少。 SEM技术表征2D裂纹 在阿尔伯塔大学实验室准备好试样薄片,使用蔡司 Sigma 系列场发射扫描电镜获得 2D 图像。为确保试样表征的精确性、一致性和测量结果的真实性,收集每个薄片在 6 种不同放大倍数和 8 个不同位置下的 SEM 图像。 图2:(a)水泥薄片(b)扫描区域(蓝色)(c)不同放大倍数下SEM图像的尺度(d) 625倍率时的SEM图像(e)对2D裂缝进行标记和编号 对于每个选定的位置,扫描电镜的放大倍率依次逐渐增大。由于没有明确的标准技术用来区分孔隙和裂缝,因此在对裂缝的测量中也包括了孔隙。特别是当它们尺寸相近时,例如裂缝状孔隙和收缩裂缝。使用 ImageJ 软件手动画线,然后根据放大倍数计算裂缝长度。 Micro-CT扫描技术表征3D裂纹 […]

混凝土细观结构的建模:基于图像 vs 参数化

Posted · Add Comment

概述 混凝土的宏观裂缝是通过微裂纹的产生、扩展和融合而形成的。混凝土构件失效的可靠预测需要深入了解混凝土非均质组分的局部裂纹演化过程。与宏观尺度的同质性相比,细观尺度的混凝土由非均质相组成,包含粗骨料、作为基体的砂浆(混合砂子和细骨料的水泥浆)、包裹的气孔。 细观混凝土中的骨料分布可以由数字图像提供真实的尺寸和位置,也可以通过将给定形状的骨料按规定尺寸进行随机空间分布获得。本项目采用这两种方法建模,对微观结构表征和力学行为数据进行验证和比较,从而确定它们的适用范围。 亮点 比较基于图像重建和参数化建模两种构建混凝土细观结构的方法采用 Simpleware 软件进行图像处理和生成有限元网格模型在 ABAQUS 软件中进行压缩和拉伸的模拟预测变形行为和损伤,结合实验数据确定不同建模方法的适用范围 基于图像重建 vs 参数化建模 基于图像重建 优点:可获得骨料和孔隙真实精确的尺寸及分布缺点:XCT 设备价格高,成像区域内骨料的大小和空间分布可能在统计上不具有代表性。 参数化建模 优点:能够涵盖更大的工程构件体积,可设计骨料的尺寸、分布及体积密度缺点:随机生成的骨料在位置和形状上与测试样本中天然的骨料不同 图像获取 采用 CEM I 42.5 普通硅酸盐水泥(OPC)和粗石灰石(直径为6.3 ~ 10 mm)设计 C30 级混凝土试件,分别配制骨料体积分数为 20%、30%、40% 三种混凝土试件。在曼彻斯特大学 Henry Moseley x 射线成像中心,使用定制的 Nikon XTH 225 对每种混凝土的圆柱体试样进行 x 射线计算机断层扫描(XCT)。 图像处理和网格划分 对 XCT 图像数据进行处理,减少光束硬化,创建为 3D 模型并分割出骨料,获得基于图像的细观尺度混凝土模型。另一种为随机骨料的参数化建模,骨料的形状和位置并不对应于特定的真实结构。通过以下方式(1)“输入”:记录颗粒的大小和形状分布参数,(2)“拿取”:生成规定分布范围内随机大小的单个颗粒,(3)“放置”:如果生成的颗粒满足与已有颗粒、体积边界的重叠和相交条件,则可放置在域体积的随机位置。在计算生成颗粒的体积分数满足指定值后,生成过程终止。 图1:由 XCT 图像分割出的骨料模型 在 Simpleware FE 中分别对基于 XCT 图像重建和参数化建模得到的模型进行网格划分,生成由四面体单元组成的高质量有限元网格模型。 模拟结果 将网格模型导入 ABAQUS 软件,采用混凝土损伤塑性模型(CDP)描述砂浆在不同荷载作用下的塑性损伤行为。混凝土(或砂浆)的非弹性行为是各向同性拉伸和压缩塑性以及各向同性损伤的组合。当施加载荷时,由于损伤累积,永久塑性变形与刚度退化同时发生。达到峰值应力后,可观察到软化响应。 图2:(a)-(c)含骨料20%混凝土基于图像模型的三种不同网格粗糙度 (d)-(e)模拟压缩和拉伸时的应力应变曲线 对基于图像的不同粗糙度网格模型进行对比分析发现,网格尺寸对混凝土压缩和拉伸情况下的影响不显著。粗糙网格有 393157 个节点和 2284750 […]

了解肠外药瓶完整性的瓶塞密封工艺

Posted · Add Comment

概述 用于密封含有肠外药的玻璃瓶最常用的密封系统是由压接铝带固定弹性体瓶塞。这种密封系统可用于保护容器内物质免受包括微生物污染在内的环境因素影响。X 射线微型计算机断层扫描(micro-CT)可提供肠外药瓶密封前后关于弹性体瓶塞和铝带位置的详细信息,用于评估密封完整性和判断是否需要改进密封工艺以确保密封的完整性。在与 Micro Photonics 公司的联合项目中,使用 Simpleware 软件对 micro-CT 数据进行精确地建模和分析。 亮点 通过 X 射线 CT 数据详细研究药瓶的完整性Simpleware 软件可用于图像处理、分割和封帽变形的表面偏差分析本项目为更广泛地分析不同药瓶封帽应用场景拓展了更多可能 图像获取 在密封工艺完成前后从生产线上拿出的两个独立的药瓶进行高分辨率 X 射线 micro-CT 扫描。第一个药瓶代表开放结构,弹性体瓶塞和铝带准备就绪,但铝带还没被压变形,瓶塞也没被压缩。第二个药瓶代表封闭或密封结构,铝带已经完全卷曲,从而压缩瓶塞密封药瓶。在 Bruker SkyScan 1275 Micro – CT 设备上成像,重建投影为各向同性体素大小为 25 微米的连续切片图像。 图:密封工艺中两个不同阶段里肠外药瓶的高分辨率 micro-CT 扫描,左图为开放结构,右图为封闭结构。 图像处理/分割 将每个药瓶的位图图像堆叠导入 Simpleware ScanIP 软件环境,结合使用阈值、形态学滤波器和 3D 编辑工具分割出两种结构中的瓶身、瓶塞和密封带。对分割后的数据应用平滑滤波器,在进一步处理之前平滑表面。 图:使用 Simpleware 软件创建开放结构中分割出的瓶身和密封铝带(左)及其遮盖下未被压缩的瓶塞(右) 密封过程的表征 将两个药瓶结构中分割出的瓶塞和铝带转化为 STL 文件,导入含有开放药瓶结构的项目文件中进行比较。在 Simpleware CAD 模块中,通过与开放结构中瓶塞的对比和表面偏差分析,量化封闭结构中瓶塞的变形。表面偏差流程中需要对封闭结构和开放结构中瓶塞与瓶顶部接触的同等面进行配准。 通过把开放的瓶塞作为参考面和测量开放瓶塞上采样点到变形瓶塞上最近点间的距离进行表面偏差统计。然后将测量获得的距离以参考瓶塞上彩色图的形式展示。还可以在 Simpleware ScanIP 中将变形的铝带叠放在原始的开放铝带图像上,从而可视化密封过程中铝带的变形。同时将铝带与药瓶表面配准,图像显示创建了封闭结构铝带相对于开放铝带的重叠部分,方便观察变形。 结果 将变形的瓶塞叠放在开放的瓶塞和瓶身图像上,可以提供关于密封过程中瓶塞如何变形的定性信息。瓶塞的顶部被压缩,使得塞子在药瓶的上表面和边缘发生横向变形。在密封过程中,可以看到位于瓶子颈部内的塞子部分被迫向下进入药瓶。 图:A)变形瓶塞的剖面(绿色)叠放在开放瓶塞(红色)和药瓶的剖面上;B)变形铝带剖面(绿色)叠放在开放密封带(红色)和药瓶的剖面上;C)开放结构中的瓶塞和密封带;D)封闭结构中的瓶塞和密封带。测量显示,相较于开放结构,封闭结构的封帽被压缩了 22%。 Simpleware 软件中的表面偏差图将变形量化,展示并计算了瓶塞壁的横向变形、塞子顶部的向下变形和底部向瓶内的移动。瓶塞的最大变形为 1.07 mm,最大的变形区域对应在塞子顶部。据观察,瓶塞侧壁的横向变形与集中在瓶塞侧的最大横向变形不一致。 图:(1)封闭结构的变形瓶塞(半透明绿色)叠放在开放的瓶塞上(红色);B)、C)和D)彩图通过以开放瓶塞作为参考面展示封闭结构瓶塞的变形。 获得的数据还表明铝带的变形(压接)不一致。 图:开放结构中金属密封带的下面(左)以及封闭结构(右),可观察到封闭结构中压接不均匀性。 本案例研究展示了一种无损量化和评价肠外药瓶密封过程中弹性体封帽和密封带变形的方法。附加的工作是要建立变形值与药瓶实际密封质量之间的关联。为了进一步开发这个模型,需要在不同的药瓶封帽机设置下对密封药瓶进行额外的测试。还应对这些另外的样品进行传统的容器密闭完整性测试(CCIT),并与本文所述方法获得结果进行比较。通过将这些结果进行关联,可以更好地理解密封过程中塞子和密封带的变形如何影响密封的完整性。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/vials.html

燕窝的微观结构和力学模拟

Posted · Add Comment

概述 燕窝的结构可以为人类提供有价值的设计见解,其在控制结构特征和材料分层方面与增材制造相似。可食用的金丝燕窝就是用它们螺纹状的唾液创建巢穴,以高分辨率严格遵循设计原则。 本项目使用 Simpleware 软件处理 micro-CT 数据的数值模型,并在 SIMULIA Abaqus 中进行应力分布的有限元(FE)模拟,研究燕窝中材料特性如何与结构设计相结合。结果显示,燕窝的宏观和微观尺度结构模式具有显著的一致性,表明对施加载荷的响应依赖于保守的设计策略,避免用于储存金丝燕鸟蛋的重要区域发生断裂。 亮点 燕窝的设计原则为如何构建复杂结构提供了重要见解,与增材制造技术具有共同点。Simpleware 软件由 µCT 创建的模型可以详细描述燕窝的微观结构。Simpleware 软件为逼真的模拟提供高质量的 FE 网格。Abaqus 的仿真结果表明燕窝是按照特定的设计原则搭建。 在 Simpleware 中创建模型 为开展这项工作,研究人员从商业农场获得了 5 个金丝燕窝,并使用 SkyScan 1176 高分辨率的 micro-CT 扫描仪(Sky Scan,比利时)进行扫描。随后将数据导入 Simpleware ScanIP 中,对感兴趣区域进行可视化和分割。为了提高效率,先对图像数据进行重采样,将感兴趣区域从背景数据中分割出来。修正 µCT 数据中的伪影和噪声,通过阈值工具分割燕窝并去除背景噪声。 使用 Floodfill 工具删除不连接的掩膜伪影,应用 recursive Gaussian 滤波器降低图像噪声和细节电平。设置将小于 125 体素的闭合孔隙添加到掩膜中,这样可以减少计算时间并提高生成单元的质量。 图:燕窝模型重建的工作流程,利用 Simpleware 软件和 Abaqus 完成从 micro-CT扫描到 FE 模型 使用 Simpleware ScanIP 测量和统计工具计算整个燕窝的形态计量学参数,包括:质量密度、燕窝的体积和表面积,以及孔隙分析。测量的对象是分割的燕窝掩膜和封闭孔隙的单独掩膜。编写一个在 YZ 、 XZ 和 XY 坐标平面对掩膜进行逐个切片的脚本,分析每个切片上孔隙和掩膜的数据,生成一个由闭合孔隙组成的多标签掩膜。创建这个掩膜是为了交互式地可视化和分析包含多个区域的孔隙掩膜,例如唾液链之间分散的孔隙。孔隙多标签掩膜是通过在孔隙掩膜中标记不连通区域获得,同时赋予每个区域不同的颜色。 导出用于模拟的FE模型 在 Simpleware 软件中生成能够展示微观结构特征的高质量有限元网格,用于模拟不同的加载状况。选择 FE Free 网格划分算法,确保高度精细的燕窝微观结构具有很高的几何精度,从而真实地表示结构中的孔隙率。网格经过平滑处理后,可导出为包含大约500万个单元的全四面体有限元模型,平均边长的长宽比为 4 – 5,平均内外长宽比为 0.8 – 1。 图:Simpleware 软件分割和生成燕窝FE网格的细节展示 在划分网格的设置中定义接触实体和节点集,然后将专用的网格模型导出至 Abaqus 求解器,可以选择节点集用于施加边界条件和载荷。通过扫描电子显微镜进行原位单轴拉伸试验,获得材料的应变和应力特性。 图:机械测量用 3D 模型生成的高分辨率燕窝 FE 网格模型,彩色标尺表示不同的材料密度 模拟应力和应变 在 Abaqus 中,有限元网格的材料属性通过拉伸试验获得的数据赋值。根据名义应力-应变曲线设置输入数据,同时考虑小变形时的线弹性模型。假设该材料在纤维水平上为各向同性,由 µCT 扫描中捕获纤维的几何排列而产生了结构的各向异性。模拟假设最坏的情况是两只金丝燕和两颗蛋施加的体积力(重力),与只额外对鸟蛋进行的测试比较结果。 图:有限元模拟结果展示在每个线性静力加载状况(A、C、E)及最坏加载情况(A-D)下的最大主应力 Simpleware ScanIP 中预定义的加载区域含有一定数量的节点,包括在燕窝边缘施加金丝燕重力的两个定义区域和燕窝中心施加鸟蛋重力的两个区域。对于燕窝的每个有限元模型,在计算应力和应变分布时,将燕窝与壁接触的几何位置处节点集约束为完全固定的(所有方向位移均为零)。有限元模拟结果显示每个线性静力加载情况结束时的最大主应力。中心的“鸟蛋区域”应力值较低,对锚定区域起到保护作用。 结论 由唾液形成的可食燕窝在宏观(重量、形状)和微观(孔隙面积和分布)特性上表现出显著的相似性,这表明燕窝是由生物采用特定的设计原则建造。对燕窝的研究也表明它们的搭建目标足以支撑两只金丝燕和两颗鸟蛋。峰值应力的管理确保优化的结构能够完全承受鸟蛋和金丝燕的重力而不破坏燕窝。 此外,该研究展示了单一材料如何正确分布在特定结构中,创建出具有可持续性和弹性的结构。这些来自动物的建造结构设计原则为人们提供了如何在仅使用本地或自产材料的条件下创建复杂结构的见解,与增材制造技术具有相同之处。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/avian-nests.htmlH.R. Jessel, […]

N95 口罩过滤器的高效 3D 打印

Posted · Add Comment

N95 口罩在新型冠状病毒肺炎(COVID-19)大流行期间需求量非常大,因为它透气性好,又能够有效保护公众,同时还可以通过可重复性使用减少环境中的废弃物。3D打印的N95医用口罩过滤器还具有抗菌性或可灭菌性,且适合于灵活设计。然而,这些过滤器的生产速度缓慢,目前相关产业正在通过粘结剂喷射3D打印、micro-CT 扫描、三维图像处理和 CFD 模拟等工作流程解决这一问题。匹兹堡大学、ExOne、Ansys 和 Synopsys 的研究人员致力于开发一种高效的数字化原型工艺,有助于在制造3D打印铜和不锈钢口罩过滤器时节省时间和资源。 图:带过滤器的N95口罩示例 优化 3D 打印过滤器 整合不同资源创建过滤器的工作流: ExOne 公司利用粘结剂喷射打印和烧结的方法获得不同的过滤器样品及其实验数据。使用 Bruker SkyScan 12972 uCT 设备扫描样品。将扫描图像数据导入 Simpleware 软件,对多孔结构进行分割,生成可用于模拟的 CFD 网格模型。采用 Ansys FLUENT 分析 N95 口罩正常使用时的性能,包括多孔电阻和不同条件下 Simpleware 精细网格的模拟运行,从而预测哪些金属粉末/烧结组合符合可接受的过滤标准。结果表明,相较于 1 µm 颗粒,打印的过滤器提高了对 5 µm 颗粒的过滤效率。研究高、低流量区间如何为口罩设计和提高性能提供见解。 图:在 Simpleware 软件中创建的 CFD 网格(左)和 Ansys FLUENT 中的颗粒流模拟:1 µm 颗粒(效率58%)(中)和 5 µm 颗粒(效率97%)(右)。 未来影响 鉴于对 N95 口罩和高效过滤器制造的持续需求,这种结合粘结剂喷射3D打印和打印及后处理参数的迭代优化有望提高灭菌型金属 N95 […]

优化大型强子对撞机的线圈设计

Posted · Add Comment

大型强子对撞机(LHC)High Luminosity(HiLumi)的升级以及其他额外的升级依赖于超导 11T 偶极磁体增大束流亮度,从而扩大物理实验的数据样本。新的偶极磁体由Nb3Sn超导元件制成,在制造阶段经过非常特殊和必要的热处理后变得非常脆。 在 LHC 加速器最终装配和运行期间,微观超导元件(直径约 40 µm)对施加给磁体的应力和应变会非常敏感。理解和调控源于宏观尺度到微观尺度的应力和应变,以及它们导致超导元件的永久性退化对磁体的性能极其重要。 图:LHC隧道(来源:CERN) 基于三维图像建模的 Simpleware 软件在欧洲核子研究中心(CERN)的 HiLumi 项目中,采用先进的材料模型表征代表性的线圈结构,从而预测不同尺度下的性能。这项研究通过考虑真实线圈几何结构的全局应力,在股线和细丝水平上进行逼真的模拟。 图:线圈107的高清光学(像素数:11640 × 6264)图像以及为网格划分和有限元分析将图像分割为不同的部分(来源:CERN) Simpleware 软件为处理三维图像数据提供了一个快速、直观的环境。在这个案例中,首先通过 X 射线 CT 扫描创建铝制部件(包含缺陷)的一组图像。ELEMCA 实验室使用 Simpleware ScanIP 分割组件和处理数据,捕获用于仿真的重要元素。 图:从完整的107线圈几何结构提取子模型,其SEM图像中分割出具有外载荷股线的应力分布。1:纤维/云母/树脂,2:股芯(退火铜),3:不锈钢芯,4:纯树脂,5:股线基体(退火铜),6:超导细丝,7:超导细丝(假设为退火铜)。环形区域显示在细丝之间呈现为高应力区域(来源:CERN) CERN 通过实验测试从线圈材料中获得应力-应变测量值。然而,他们发现有必要增加有限元(FE)模型的细节来进行模拟,以便更好地了解基于材料特性的行为。Simpleware 软件通过分割线圈截面的高清光学图像及同一线圈截面中微观超导细丝的扫描电子显微镜(SEM)图像能够解决这个问题。该方法可以在保留原始原型特征的情况下表征线圈复杂的内部几何结构。 CERN 在 ANSYS 中采用 Simpleware 创建的网格模型对线圈绞线和电缆的复丝进行真实的应力分析。Simpleware生成的精细网格使 CERN 能够提高测量应力的精确性,从而实现更准确和更有价值的模拟。本项目的结果正被用于改善 CERN 大型强子对撞机的线圈特性和长期性能。 CERN 的 Michael Daly 评价 Simpleware 软件对当前研究的重要性: Simpleware ScanIP 软件使我们能够利用光学和扫描电子显微镜的二维图像在多个尺度上分析 11T 偶极线圈的复杂性。偶极线圈的超导电缆内部存在固有变形,使用 CAD […]

Simpleware ScanIP中的纤维取向分析

Posted · Add Comment

复合材料中纤维的分布和取向对其力学或热学性质有很大的影响,因此对组件的性能也有重大贡献。准确的纤维分析是验证设计的关键,但在一个相对较大的零件中,当纤维排列密集且直径是微米尺度时就非常具有挑战性了。仿真可以通过预测注塑或铸造过程中的流动模式,由此获取可能的纤维取向。然而这些方法并不完美,无法解释零件之间的差异。对于完全工程化的组件,仍然必须要对工艺和制造的零件进行验证。 Simpleware ScanIP 中的纤维取向分析工具可以帮助您从制造零件的 micro-CT 图像中获得取向信息,并应用在多种方法中以了解组件真实的性能和寿命。 Simpleware 纤维取向分析的优势 直接从图像数据进行快速的纤维取向分析,不需要图像分割表征纤维,了解密度和取向可视化的向量和图表方便理解并与同事分享信息导出详细的取向信息,用以改进有限元模拟中的材料属性表征 案例:纤维增强塑料(FRP)零件 我们以由纤维增强塑料(FRP)制成的电机安装支架为例。这种轻质复合材料是短切纤维束嵌入聚合物中形成的,具有高抗压和抗拉强度。这种材料有广泛的应用,包括: 航空航天组件——支架、机翼结构、襟翼等汽车——保险杠、支架、踏板等体育器材——滑雪板、自行车、桨等 与传统的金属组件相比,FRP 提供了更高的强度、弹性、耐热性以及更轻的重量。 micro-CT 扫描可用于检测 FRP 支架中的纤维。对于特定的分辨率,会有一个能够扫描组件的最大尺寸限制。因此,通常需要扫描组件的几个不同部分。可以将这些部分结合构成整个组件高度详细的 micro-CT 扫描,或者它们也可以是零件内不同的感兴趣区域(ROI)。 micro-CT 扫描可以详尽地显示整个零件的纤维,从而进行最佳的纤维密度和取向计算。然而考虑到零件的尺寸、时间和硬件资源等限制可能不满足这样做的条件。因此,扫描不同的 ROI 是一种可行的替代解决方案。基于单个区域的纤维取向信息,采用均质材料属性运行初始结构分析,然后从潜在高应力集中区域中选择出这些 ROI。获取不同 ROI 的扫描数据后进行纤维取向分析,然后将这些关键区域的取向信息添加到仿真模型中。用到的区域越多,局部材料属性的描述越准确,通过仿真获得FRP支架真实性能的表征就越好。 图:Simpleware ScanIP中纤维增强塑料(FRP)零件的纤维取向分析 怎样使用 Simpleware 的纤维取向分析 micro-CT 扫描投影被重建为一系列的 2D 图像切片,将其导入 Simpleware ScanIP。您可以采用 3D 背景体积渲染来可视化零件内纤维的分布和结构。如果使用不同的 ROI,也可以在 Simpleware ScanIP 中将它们配准到更大的 CAD 模型或更低分辨率的零件几何结构CT扫描。 纤维取向分析模型是利用图像数据创建的,不需要分割,只需指定纤维的尺寸(横截面)即可。通过快速的距离测量判定,然后根据图像分辨率和您的需求选择合适的取样大小(以体素为单位)。至此,运行分析前的准备就已经完成了。 虽然不需要,但您也可以进行图像分割,再将获得的能够代表纤维的掩膜添加到分析中。这种情况只考虑掩膜区域(在某些案例中处理速度会更快)的集中分析。建议在纤维填充率低、图像中包含几个相或成像有伪影的时候采用这种方法。 展示结果 分析完成后,您可以通过 Statistics 工具或 Vectors 工具展示结果。统计工具可以显示“全局”或“感兴趣区域”的取向结果,包括: 主要取向,可用于均质化模型特征分析全局取向张量其他 […]

 
  • 标签

  •