【宁夏大学白红存教授课题组】基于ReaxFF MD模拟探索化学链燃烧中芳香族片段解聚的反应机制及复杂反应网络

Posted · Add Comment

1. 计算模型和方法 图1. 芳烃分子在铁基载氧体表面的化学链燃烧反应模型 文中选取化学链技术中最常见的Fe2O3载氧体。构建α-Fe2O3(001)低指数晶面。以Fe-O3-Fe…为反应表面的稳定结构扩胞得到初步铁基载氧体颗粒模型。然后将多环芳烃放到Fe2O3载氧体表面,然后再进行5×5超胞。ReaxFF MD模拟的周期性盒子设定为100 Å×100 Å×50 Å。如图所示,Fe2O3载氧体总共8层16000个原子,其中氧原子9600个,Fe原子6400个。载氧体上面共有25个多环芳烃。多环芳烃选择了固体燃料中具有代表性的4种多环芳烃,这些多环芳烃在许多煤分子结构是常见的。 主要对CLC过程反应器内Fe2O3和多环芳烃体系反应过程ReaxFF MD模拟。计算采用郑等开发的包含C/H/O/Fe等元素的ReaxFF力场参数,以及NVT正则系综分子动力学(NVT-MD)方法进行计算。计算中,步长为0.25 fs,温度由阻尼常数为0.1 ps的Berendsen恒温器控制。模拟反应温度分别为2000、2500、3000、3500、4000 K,探究不同温度Fe2O3载氧体和多环芳烃反应特性。反应前计算模型在450 K进行了40000步非反应(Non-reaction)弛豫过程,使其处于平衡状态。ReaxFF MD模拟过程累积1000000步,总时长250 ps。 图2. 多环芳烃的模型 2. 结果讨论 图3 . 多环芳烃S1反应的过程 图3是多环芳烃在Fe2O3载氧体表面反应的可视化过程。根据截取的0、25 、 75 、125、175、250ps时CLC体系实时图片,燃烧过程可分为四个阶段。通过上述化学链燃烧不同阶段的反应物和产物分析发现,这些多环芳烃分子和铁基载氧体化学链燃烧过程可分为四个阶段。第一个阶段属于反应前阶段,主要发生载氧体颗粒和燃料分子的结构弛豫和扩散。该过程使得体系中载氧体颗粒和燃料分子中化学键呈现键合-解离-键合的动态平衡特征。这将有助于它们在后续过程中参与反应。第二阶段属于初始反应阶段。此阶段多环芳烃自身开始逐步发生热裂解反应,生成自由基和含碳碎片。同时,部分燃料分子或反应碎片与载氧体表面的晶格氧距离靠近,形成有效相互作用,进而形成化学键连。载氧体开始发生反应逐步释氧 。第三阶段属于剧烈燃烧反应阶段。此时多环芳烃在高温环境中大量裂解成分子碎片。载氧体大量释氧同步发生。整个化学链体系呈现剧烈燃烧反应的特征。第四阶段属于最终燃烧阶段。此时大部分多环芳烃已裂解成碎片。主要发生的反应为大量含碳碎片中间体物种的氧化燃烧。该过程生成大量典型燃烧最终产物,如CO,CO2,H2O等。 图4.  基于多环芳烃S1反应中C…C相互作用的RDF分析 为了系统了解不同芳烃燃料分子在化学链燃烧过程中分子结构变化,对燃料分子S1在CLC过程中不同反应时间体系的C…C相互作用距离进行了径向分布函数(RDF)分析。RDF在约1.4 Å 处的峰可反映体系中C-C键的数量变化,并表征芳烃燃料分子的热分解反应动力学。 在50 ps时1.4 Å处峰的强度仍2500。这表明此时燃料分子中C-C数量不变,燃料分子尚未解离。在75/ 100/ 125/ 150/ 175 ps时,RDF中1.4 Å处峰的强度分别为2000,1700,300,120和40。这表明反应过程中燃料分子中C-C数量减少,燃料分子逐步解离发生燃烧反应。通过RDF和 C-C键数量变化分析,可以很好地反映上述化学链燃烧反应的四个阶段。 图5. 基于多环芳烃反应中反应物分子数量变化(图A是S1反应中分子数量变化图;B是S2反应中分子数量变化图;C是S3反应中分子数量变化图;D是S4反应中分子数量变化) 研究发现,CLC反应温度对燃料分子参与化学链燃烧反应影响显著。燃料分子随CLC温度升高呈现参与反应提前现象。从燃料分子反应数量可发现,随着CLC温度升高,芳烃分子参与反应越早。例如,S1分子在3500 K时,在50 ps开始反应分解,而2000/2500/3000  K时则分别为62.5,62.5,50 ps。因此,S1分子在3500 K的反应分别比2000/2500/3000 K提前了12.5,12.5,0 ps。同时还发现,CLC温度对于燃料分子分解时间具有影响。分析燃料分子反应数量可发现,随着CLC温度升高,芳烃分子全部参与CLC反应耗时减少。例如,S1分子在3500 K时,在50 ps开始反应分解, 137 ps体系无S1分子。S1分子全部参与反应并分解总耗时87 […]

基于CT图像自动检测涡轮叶片的缺陷

Posted · Add Comment

喷气发动机的涡轮叶片需要在一些最极端的条件下运行,工作温度可能要超过其所采用合金的熔点。因此,复杂的冷却系统结构、涂层和其他特性需要使叶片保持在工作温度范围内,不容失败。然而,制造的零件中可能包含有细微嵌入和隐藏的缺陷,通过 CT 检测等方法可以检查这些零件的内部。 CT 检测是一种无损的工业 X 射线成像技术,在进行 360 度旋转零件的同时以特定间隔拍摄数百或上千张单独的二维射线照片。然后将这组 2D 图像重建为 3D CT 容积,可在任意角度进行数字化切片,用户无需物理切割或打开产品即可查验产品外部和内部特征。 该工作流程面临的一个挑战是,解决零件内部缺陷和尺寸的能力取决于整体图像质量,而图像质量可能与检测周期时间直接相关。对于涡轮叶片这样高密度和复杂的零件,通常需要大量的扫描和技术人员的解读时间,给高通量应用造成了潜在瓶颈。 Synopsys 公司 Simpleware 软件的定制化模块(Custom Modeler)使用支持人工智能的机器学习方法对特定案例进行分析,为解决人工处理图像中的瓶颈问题提供了解决方案。该方法消除了工作流程中耗时的手动分割时间,并通过预先确定缺陷位置来减少检查时间。因此,进一步扩大检测规模仅取决于检测所用硬件的功率。与 Avonix Imaging 公司合作开发的检测高压涡轮叶片中低频关键缺陷的项目中,目标是创建一个找出可能存在缺陷区域的全自动检测助手,加快关键检测工作流程。 图1:Simpleware软件中的自动关键缺陷检测工具 获取输入数据 近年来,X 射线 CT 技术有了很大的创新。Pixel Push、螺旋 CT、偏置 CT等扫描方式的扩展,甚至包括散热旋转靶和 450kV 微焦点 X 射线源等硬件的改进,推动了 CT 扫描在许多行业的应用发展。通常情况下,CT 可以提供给用户无法由任何其他方式获得的视图。 决定采用哪种 CT 方法和技术是最优的策略在很大程度上取决于每个公司的具体需求和他们的项目目标。CT 技术人员需要考虑产品的材料、密度、尺寸、形状、特征,以及缺陷尺寸要求、预期扫描时间及所需输出格式,所有这些细节都可能会对最佳 CT 扫描技术产生影响。 图2:X射线扫描过程图解:(a)高分辨率LDA扫描(b)高速DDA扫描切片 了解目标和产品细节后,就可以开发扫描技术。工业 CT 最常用的硬件参数是 X 射线能量(225kV 或 450kV)、焦斑尺寸(mini-focus 或 micro-focus)和探测器类型(LDA 或 DDA)。然后设置零件夹具、几何放大倍率和机械手定位(射线源到零件,射线源到探测器等)。最后,在运行 CT 扫描前对采集方式、投影数量等进行细微调整。 针对本项目,由于涡轮叶片密度较大,因此选用 450kV 微焦点,并对 LDA 和 DDA 探测器都进行了测试。为设计理想的参考扫描,Avonix Imaging 公司在同一组涡轮叶片样品上进行了大量的高质量 LDA 扫描和高速 DDA 扫描。样品扫描时间从几分钟到几个小时不等,也说明了理解项目目标并找到尽可能有效满足这些目标所依赖技术的重要性。 运行自动化工作流程 优化 CT 扫描流程提高效率后的下一步就是开发自动检测工作流。 图3:使用Simpleware定制化模块实现自动化检测工作流 在实践中,自动化工作流涉及到: 从生产线获得零件以预定方向进入 CT 扫描仪进行检测速度扫描将 CT 扫描数据导入 Simpleware 软件,在 Simpleware 定制化模块执行人工智能工作流:根据专家用户的训练数据从 CT 扫描图像中自动分割出感兴趣区域将“理想”的设计参考模型与基于扫描的分割模型进行自动配准和表面偏差分析通过检测工具将两个模型间的偏差区域列表展示,其灵敏度可以根据检测的缺陷进行调整对列表中的“潜在缺陷”进行检查 这种定制的自动化工作流程旨在为大批量制造提供快速的缺陷检测方案,大大减少耗时的人工分割工作量。 未来影响 […]

$\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$光电探测器中铁电调控的光伏效应

Posted · Add Comment

简介 二维范德瓦尔斯型铁电材料的可切换性给纳米级光伏器件的发展带来了更多的可能性。在本文中,北京大学吕劲老师课题组基于 QuantumATK 中密度泛函理论(DFT)和非平衡格林函数(NEGF)耦合的方法,研究了单层 $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 光电探测器在不同铁电极化状态下的光电效应,通过计算表明。结果表明当铁电极化方向切换的时候, $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 光电探测器在特定波长和偏振方向下,可以产生 $69.2~mA/W$ 的光电响应率和高达 $10^7%$ 的光电流开关比。 单层 $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 材料特性研究 理论上, $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 具有两种铁电相(WZ’ 和 ZB’),作者对两种单层相的能带结构,铁电极化和光吸收系数进行了计算。其中 ZB’-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 铁电极化强度的计算结果(面内和面外计算极化强度分别为$3.58×10^{−2}$ 和 $7.53×10^{−3}~C/m^{2}$)和实验结果(分别是 $2.67×10^{−2}$ 和 $1.33×10^{−2}~C/m^2$)高度一致。计算结果表明单层 $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 的光吸收系数可以在可见光范围内达到 $10^5~cm^{-1}$,比传统 Si 和 GaAs 型光伏材料的吸收系数大一个数量级。 $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 光探测器中浓度和尺寸依赖的光电响应 作者设计了一个基于单层 $\alpha$-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 的 p-i-n 型光电探测器,研究了在掺杂浓度和中心区本征长度改变的情况下器件光电响应率的变化情况。     结果表明掺杂浓度和中心区本征长度对光电响应的影响并不是单调的,如对WZ’-$\mathrm{In}_{2} \mathrm{Se}_{3}$ 光探测器而言,最佳掺杂浓度和本征区长度分别是 $10^{20}~cm^{-3}$ 和 $8~nm$,而对于 ZB’ […]

通过 CT 扫描和仿真优化点阵结构的支架

Posted · Add Comment

高价值应用中的零部件通常需要优化以实现减轻重量、降低成本和提高性能。在这个过程中,部件的虚拟检测和建模对于初期理解设计问题是非常重要的,还可能因此在之后起到节约成本的作用。 近期我们与北极星成像(NSI)和 ANSYS 合作开发了一种简化从三维计算机断层扫描(CT)数据到机械模拟复杂过程的解决方案。使用 Simpleware 工业 CT 软件连接图像数据和仿真,分析增材制造(AM)零部件与原始设计间的差异。 关键问题在于这两个零部件是否存在任何设计差异,以及其如何影响实际性能。 获取零件结构 工作流程起始于匹兹堡大学 Albert To 教授团队的一个项目,利用 ANSYS 重新设计了带有轻量化点阵的支架结构。通过 EOS 直接金属激光烧结(DMLS)打印机制造钛铝合金模型,然后在 NSI 的实验室进行 CT 扫描,2 小时内可获得高质量的模型图像数据。 图1:匹兹堡大学通过增材制造生产的钛合金支架,CT 图像数据堆栈由 NSI 扫描获得 Simpleware 中的 CT 图像处理 将 CT 数据导入 Simpleware 软件进行图像处理和生成高质量模型,利用软件重现“制造件”的结构。在 Simpleware 中生成的体积网格可直接用于仿真,减少了在有限元(FE)求解器中重新对分割图像数据进行网格划分的耗时工作流程。 图2:在Simpleware软件中生成的高质量网格 比较 CAD 设计和基于 CT 的模型 在 Simpleware CAD 中比较扫描的“制造件”与原始理想化的 CAD 设计之间的偏差。使用标注、自动配准和偏差分析工具检测零部件之间的细微差异,包括增材制造过程中可能引入的缺陷。 图3:在 Simpleware 中使用颜色映射展示原始 CAD 结构和基于图像 STL 间的偏差分析 检测和仿真 将 Simpleware 软件生成的体积网格直接导入 […]

麻总百瀚 | 听觉系统的生物多尺度多物理场研究和医学人工智能

Posted · Add Comment

Simpleware厂商采访了哈佛大学医学院和麻总百瀚麻省眼耳医院的 Hamid Motallebzadeh 博士,了解他在计算生物力学和耳朵方面的研究工作。Hamid 作为 Simpleware 软件的长期用户,已经成功地从解剖学数据中创建了一系列针对不同应用的模型。显然地,无论是提高植入物的有效性或是应用人工智能研究耳朵,Simpleware 软件都发挥了重要的作用。 Hamid Motallebzadeh博士 哈佛医学院耳鼻咽喉头颈外科(OHNS)讲师,麻省眼耳医院研究员。具有计算生物力学专业背景,目前的工作重点是声学、听觉力学和新生儿听力筛查,研究方法包括听觉系统的多尺度多物理生物力学和医学人工智能。 研究内容 主要是开发计算模型解释实验数据,以及理解和预测因测量受到限制而无法进行实验研究情况下的系统行为。目前由 NIH(美国国立卫生研究院)支持的在研项目中涉及从数值模拟生成合成的数据集,特别是用来训练机器学习算法的有限元模型,从而推断中耳状态。 Simpleware的应用 构建有限元模型的第一步是创建感兴趣系统的几何结构。听觉系统的几何结构通常由分割 CT 或 micro-CT 图像获得。2016 年在哈佛大学医学院做博士后相关课题研究时,我研究过几款可以分割临床图像的软件。Simpleware 就是其中之一,鉴于其先进的功能、友好的环境界面和高效的客户服务,我们团队最终决定采购。在此之后,我们就一直使用 Simpleware 重建生物系统模型,不仅用于计算模拟,还可用于结构分析和插图。 头部模型的重要性 我们正在进行以及计划中的项目研究都需要用到完整的头部模型,如骨传导听觉通路和听力植入物及其与周围骨骼的相互作用。由于复合波穿过颅骨的传播方式和受试者的变异性,这种性质的实验测量即使能够实现,也是非常具有挑战性的。此外,在尸体标本上无法研究活性骨的建模和改造过程,借助于有限元建模这种有前景的方法可以研究骨锚式听力植入物的长期表现和活性骨整合过程。 在我们设计的几项包含完整头部有限元模型的项目中,一种是通过颅骨绘制 3D 振动传递模式,长期目标是设计更有效的植入物和外科植入。另一个项目是无创地监测和量化术后骨整合过程,确定骨骼-植入物整合连接外部处理单元的完成情况。这项研究采用了专用于听力植入物的高频振动下骨骼建模和改造结构的机械静态理论计算模型。 未来发展和挑战 我们目前的重点是开发包括固有解剖变异的有限元模型,思路是模拟中耳的正常和病理情况,并生成一个大的合成数据集,所得数据将用于训练从临床数据中推断中耳状态的机器学习算法。在开发这些中耳 3D 结构方面存在着许多挑战,耳膜厚度等精细的结构特征与 μCT 图像的体素尺寸大小相似。因此分割通常需要由人工完成,耗时且比较依赖于建模者的经验。而且不同部位的灰度值过于接近,交界处也不是很清晰,对自动分割的开发也是一个难题。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/news-and-events/harvard-medical-school.html

环栅硅纳米线场效应晶体管的性能极限

Posted · Add Comment

简介 由于环栅(GAA)硅纳米线(NW)场效应晶体管(FET)具有更好的静电栅控能力,它被认为是目前主流硅鳍式晶体管(FinFET)最有潜力的继承者之一。在即将来临的环栅硅纳米线晶体管时代,对硅纳米线晶体管性能极限的探究成为业界关心的问题。本文利用第一性原理量子输运模拟,对一维环栅硅线MOS晶体管的性能极限进行评估,并对其延续摩尔定律的能力给出合理可靠的预测。 使用环栅结构和足够细的硅纳米线沟道可以保证足够强的栅控,在有效抑制短沟道效应的情况下继续晶体管的尺寸缩放。为了方便描述源漏电极对沟道的影响,这里引入特征长度 $\lambda (\sqrt{\alpha \frac{\varepsilon_{ch}}{\varepsilon_{ox}}t_{ch}t_{ox}})$来表示源漏电场在沟道的穿透深度,其中 α 描述栅极几何结构,在单栅(SG)双栅(DG)、三栅(TG)以及环栅情况下,分别取值 1、1/2、1/3、1/4。$t_{ch}$ 和 $t_{ox}$分别代表沟道和栅氧化物的厚度;$\varepsilon_{ch}$ 和$\varepsilon_{ox}$ 分别代表沟道和栅氧化物的介电常数。如图1所示,从三维体材硅(Bulk Si)到单层硅烷(ML silicane)再到一维硅纳米线(1D Si NW),DFT 计算的介电常数从 $13\varepsilon_{0}$(实验值是 $11.9\varepsilon_{0}$)减小到 $2.8\varepsilon_{0}$ 并最终达到 $1.19\varepsilon_{0}$(0.6 纳米直径)。所以,减小硅纳米线的直径是进一步提升 5 nm 栅长下环栅硅纳米线晶体管性能的尝试方向之一。在实验上,硅纳米线的直径已经缩小到 1 nm。 图1 硅的介电系数随材料维度的变化图。 研究内容 本文选择直径为 1 nm 的硅纳米线作晶体管沟道,模拟了如图 2(a) 所示的环栅硅纳米线晶体管模型。经计算,电流集中在纳米线的中心位置(如图2(c))。因此,除有特殊说明,本文讨论的环栅硅纳米线晶体管电流均为直径归一化处理的结果。如图3所示,在栅长为 5 nm 和 3 nm 的情况下,无论直径还是周长电流归一化方式,环栅硅纳米线晶体管的开态电流都要明显高于理论模拟的三栅硅鳍式晶体管以及双栅单层硅烷晶体管。以 ITRS 要求的高性能器件开态电流为基准,能够满足开态电流标准的三栅硅鳍式晶体管和单层硅烷晶体管,最小栅长均为 5 nm,而达到开态电流标准的环栅硅纳米线晶体管,最小栅长为 3 nm。 图2 (a) 环栅硅纳米线晶体管三维立体图, 沟道采用氢钝化的直径为 1 nm […]

了解肠外药瓶完整性的瓶塞密封工艺

Posted · Add Comment

概述 用于密封含有肠外药的玻璃瓶最常用的密封系统是由压接铝带固定弹性体瓶塞。这种密封系统可用于保护容器内物质免受包括微生物污染在内的环境因素影响。X 射线微型计算机断层扫描(micro-CT)可提供肠外药瓶密封前后关于弹性体瓶塞和铝带位置的详细信息,用于评估密封完整性和判断是否需要改进密封工艺以确保密封的完整性。在与 Micro Photonics 公司的联合项目中,使用 Simpleware 软件对 micro-CT 数据进行精确地建模和分析。 亮点 通过 X 射线 CT 数据详细研究药瓶的完整性Simpleware 软件可用于图像处理、分割和封帽变形的表面偏差分析本项目为更广泛地分析不同药瓶封帽应用场景拓展了更多可能 图像获取 在密封工艺完成前后从生产线上拿出的两个独立的药瓶进行高分辨率 X 射线 micro-CT 扫描。第一个药瓶代表开放结构,弹性体瓶塞和铝带准备就绪,但铝带还没被压变形,瓶塞也没被压缩。第二个药瓶代表封闭或密封结构,铝带已经完全卷曲,从而压缩瓶塞密封药瓶。在 Bruker SkyScan 1275 Micro – CT 设备上成像,重建投影为各向同性体素大小为 25 微米的连续切片图像。 图:密封工艺中两个不同阶段里肠外药瓶的高分辨率 micro-CT 扫描,左图为开放结构,右图为封闭结构。 图像处理/分割 将每个药瓶的位图图像堆叠导入 Simpleware ScanIP 软件环境,结合使用阈值、形态学滤波器和 3D 编辑工具分割出两种结构中的瓶身、瓶塞和密封带。对分割后的数据应用平滑滤波器,在进一步处理之前平滑表面。 图:使用 Simpleware 软件创建开放结构中分割出的瓶身和密封铝带(左)及其遮盖下未被压缩的瓶塞(右) 密封过程的表征 将两个药瓶结构中分割出的瓶塞和铝带转化为 STL 文件,导入含有开放药瓶结构的项目文件中进行比较。在 Simpleware CAD 模块中,通过与开放结构中瓶塞的对比和表面偏差分析,量化封闭结构中瓶塞的变形。表面偏差流程中需要对封闭结构和开放结构中瓶塞与瓶顶部接触的同等面进行配准。 通过把开放的瓶塞作为参考面和测量开放瓶塞上采样点到变形瓶塞上最近点间的距离进行表面偏差统计。然后将测量获得的距离以参考瓶塞上彩色图的形式展示。还可以在 Simpleware ScanIP 中将变形的铝带叠放在原始的开放铝带图像上,从而可视化密封过程中铝带的变形。同时将铝带与药瓶表面配准,图像显示创建了封闭结构铝带相对于开放铝带的重叠部分,方便观察变形。 结果 将变形的瓶塞叠放在开放的瓶塞和瓶身图像上,可以提供关于密封过程中瓶塞如何变形的定性信息。瓶塞的顶部被压缩,使得塞子在药瓶的上表面和边缘发生横向变形。在密封过程中,可以看到位于瓶子颈部内的塞子部分被迫向下进入药瓶。 图:A)变形瓶塞的剖面(绿色)叠放在开放瓶塞(红色)和药瓶的剖面上;B)变形铝带剖面(绿色)叠放在开放密封带(红色)和药瓶的剖面上;C)开放结构中的瓶塞和密封带;D)封闭结构中的瓶塞和密封带。测量显示,相较于开放结构,封闭结构的封帽被压缩了 22%。 Simpleware 软件中的表面偏差图将变形量化,展示并计算了瓶塞壁的横向变形、塞子顶部的向下变形和底部向瓶内的移动。瓶塞的最大变形为 1.07 mm,最大的变形区域对应在塞子顶部。据观察,瓶塞侧壁的横向变形与集中在瓶塞侧的最大横向变形不一致。 图:(1)封闭结构的变形瓶塞(半透明绿色)叠放在开放的瓶塞上(红色);B)、C)和D)彩图通过以开放瓶塞作为参考面展示封闭结构瓶塞的变形。 获得的数据还表明铝带的变形(压接)不一致。 图:开放结构中金属密封带的下面(左)以及封闭结构(右),可观察到封闭结构中压接不均匀性。 本案例研究展示了一种无损量化和评价肠外药瓶密封过程中弹性体封帽和密封带变形的方法。附加的工作是要建立变形值与药瓶实际密封质量之间的关联。为了进一步开发这个模型,需要在不同的药瓶封帽机设置下对密封药瓶进行额外的测试。还应对这些另外的样品进行传统的容器密闭完整性测试(CCIT),并与本文所述方法获得结果进行比较。通过将这些结果进行关联,可以更好地理解密封过程中塞子和密封带的变形如何影响密封的完整性。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/vials.html

燕窝的微观结构和力学模拟

Posted · Add Comment

概述 燕窝的结构可以为人类提供有价值的设计见解,其在控制结构特征和材料分层方面与增材制造相似。可食用的金丝燕窝就是用它们螺纹状的唾液创建巢穴,以高分辨率严格遵循设计原则。 本项目使用 Simpleware 软件处理 micro-CT 数据的数值模型,并在 SIMULIA Abaqus 中进行应力分布的有限元(FE)模拟,研究燕窝中材料特性如何与结构设计相结合。结果显示,燕窝的宏观和微观尺度结构模式具有显著的一致性,表明对施加载荷的响应依赖于保守的设计策略,避免用于储存金丝燕鸟蛋的重要区域发生断裂。 亮点 燕窝的设计原则为如何构建复杂结构提供了重要见解,与增材制造技术具有共同点。Simpleware 软件由 µCT 创建的模型可以详细描述燕窝的微观结构。Simpleware 软件为逼真的模拟提供高质量的 FE 网格。Abaqus 的仿真结果表明燕窝是按照特定的设计原则搭建。 在 Simpleware 中创建模型 为开展这项工作,研究人员从商业农场获得了 5 个金丝燕窝,并使用 SkyScan 1176 高分辨率的 micro-CT 扫描仪(Sky Scan,比利时)进行扫描。随后将数据导入 Simpleware ScanIP 中,对感兴趣区域进行可视化和分割。为了提高效率,先对图像数据进行重采样,将感兴趣区域从背景数据中分割出来。修正 µCT 数据中的伪影和噪声,通过阈值工具分割燕窝并去除背景噪声。 使用 Floodfill 工具删除不连接的掩膜伪影,应用 recursive Gaussian 滤波器降低图像噪声和细节电平。设置将小于 125 体素的闭合孔隙添加到掩膜中,这样可以减少计算时间并提高生成单元的质量。 图:燕窝模型重建的工作流程,利用 Simpleware 软件和 Abaqus 完成从 micro-CT扫描到 FE 模型 使用 Simpleware ScanIP 测量和统计工具计算整个燕窝的形态计量学参数,包括:质量密度、燕窝的体积和表面积,以及孔隙分析。测量的对象是分割的燕窝掩膜和封闭孔隙的单独掩膜。编写一个在 YZ 、 XZ 和 XY 坐标平面对掩膜进行逐个切片的脚本,分析每个切片上孔隙和掩膜的数据,生成一个由闭合孔隙组成的多标签掩膜。创建这个掩膜是为了交互式地可视化和分析包含多个区域的孔隙掩膜,例如唾液链之间分散的孔隙。孔隙多标签掩膜是通过在孔隙掩膜中标记不连通区域获得,同时赋予每个区域不同的颜色。 导出用于模拟的FE模型 在 Simpleware 软件中生成能够展示微观结构特征的高质量有限元网格,用于模拟不同的加载状况。选择 FE Free 网格划分算法,确保高度精细的燕窝微观结构具有很高的几何精度,从而真实地表示结构中的孔隙率。网格经过平滑处理后,可导出为包含大约500万个单元的全四面体有限元模型,平均边长的长宽比为 4 – 5,平均内外长宽比为 0.8 – 1。 图:Simpleware 软件分割和生成燕窝FE网格的细节展示 在划分网格的设置中定义接触实体和节点集,然后将专用的网格模型导出至 Abaqus 求解器,可以选择节点集用于施加边界条件和载荷。通过扫描电子显微镜进行原位单轴拉伸试验,获得材料的应变和应力特性。 图:机械测量用 3D 模型生成的高分辨率燕窝 FE 网格模型,彩色标尺表示不同的材料密度 模拟应力和应变 在 Abaqus 中,有限元网格的材料属性通过拉伸试验获得的数据赋值。根据名义应力-应变曲线设置输入数据,同时考虑小变形时的线弹性模型。假设该材料在纤维水平上为各向同性,由 µCT 扫描中捕获纤维的几何排列而产生了结构的各向异性。模拟假设最坏的情况是两只金丝燕和两颗蛋施加的体积力(重力),与只额外对鸟蛋进行的测试比较结果。 图:有限元模拟结果展示在每个线性静力加载状况(A、C、E)及最坏加载情况(A-D)下的最大主应力 Simpleware ScanIP 中预定义的加载区域含有一定数量的节点,包括在燕窝边缘施加金丝燕重力的两个定义区域和燕窝中心施加鸟蛋重力的两个区域。对于燕窝的每个有限元模型,在计算应力和应变分布时,将燕窝与壁接触的几何位置处节点集约束为完全固定的(所有方向位移均为零)。有限元模拟结果显示每个线性静力加载情况结束时的最大主应力。中心的“鸟蛋区域”应力值较低,对锚定区域起到保护作用。 结论 由唾液形成的可食燕窝在宏观(重量、形状)和微观(孔隙面积和分布)特性上表现出显著的相似性,这表明燕窝是由生物采用特定的设计原则建造。对燕窝的研究也表明它们的搭建目标足以支撑两只金丝燕和两颗鸟蛋。峰值应力的管理确保优化的结构能够完全承受鸟蛋和金丝燕的重力而不破坏燕窝。 此外,该研究展示了单一材料如何正确分布在特定结构中,创建出具有可持续性和弹性的结构。这些来自动物的建造结构设计原则为人们提供了如何在仅使用本地或自产材料的条件下创建复杂结构的见解,与增材制造技术具有相同之处。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/avian-nests.htmlH.R. Jessel, […]

肿瘤手术的术前规划、虚拟仿真和手术导板

Posted · Add Comment

概述 3D LifePrints 公司使用 Simpleware 软件从患者图像获得 3D 打印的解剖模型,用于3D虚拟仿真和手术导板设计。Simpleware 用于诊断的 3D 打印正在帮助3D LifePrints 实现即时医疗(POC)3D 打印以及嵌入式临床。 3D LifePrints 重点关注的专科之一是肿瘤外科,目前已在英国的一些专科医院开展合作。他们的工程师帮助手术团队处理困难和复杂的病例,参与到切割导板的设计和制造。这里展示两个最近的成功案例,包括半骨盆切除术和定向髂骨切除术。 亮点 使用 Simpleware ScanIP 导入和可视化 CT 扫描,分割骨骼使用 Ansys 软件进行骨骼/器械间相互作用的模拟3D 打印包含定制植入物的患者骨骼模型虚拟手术规划辅助最终的手术和植入该工作流程节省时间并可更好的支持临床决策 PI/II 半骨盆切除术 在本例中,3D LifePrints 需要创建灭菌性手术导板,协助切除患者左半骨盆被肿瘤肿块破坏的部分。由于肿瘤切除手术日期紧迫,需要快速完成服务。工程师使用 Simpleware ScanIP Medical 对患者最新的 MRI 和 CT 扫描数据进行分割,创建包含肉瘤的左半骨盆虚拟模型。然后通过安全的手术切缘使肉瘤数字化扩增,突出显示以更好地区分,帮助外科医生评估和确定最佳手术切割平面。 3D LifePrints制作了3种不同的手术导板:(1)通过髂骨侧方的双平面切口(2)通过耻骨的单切口(3)引导通过坐骨的单切口。3种导板均采用可灭菌的USP Class VI生物相容性透明材料Biomed Clear,在该医院内3D Life Prints控制环境设备Formlabs 3B 3D打印机上打印制成。 图:由Simpleware生成的PI/II 半骨盆切除术模型 3D Life Prints能够在5天内创建解剖模型和设计制造导板,满足手术紧迫性的需求。手术团队使用解剖模型和导板作为术前工具,与患者详细讨论肿瘤的复发和转移。在术中,最佳匹配的导板帮助实现单一的后路扩大技术,显著缩短手术时间。 定向髂骨切除术 第二个案例的患者在常规扫描中被发现显示为无症状1级软骨肉瘤,然后进行了单独的进一步检查。肿瘤较小且位于患者的左侧髂骨,因此外科医生希望进行有针对性的、保留骨骼的切除术,确保合适的切缘以保留髂骨的完整性。 因此,3D LifePrints为该手术设计并提供了患者特定的灭菌手术钻孔导板。使用Simpleware ScanIP Medical从患者的CT和MRI扫描中分割出骨骼和肿瘤结构。然后将这些解剖结构组合为虚拟的模型,其中通过肿瘤的数字化生长创建安全的手术切缘。突出显示边界以获得更好的可视化,方便外科医生确定最佳的切除路径。 3D LifePrints使用Biomed Clear材料制作患者专用的圆形钻孔通道导板,并将3D打印的解剖模型交付给手术团队供术中参考。 图:为定向髂骨切除术准备的3D打印模型和手术导板 导板拟合良好,外科医生通过必要的钻孔引导后续的截骨手术,使手术变得简单并在一小时内完成。总的来说,手术团队高度赞扬了导板的精度水平。这种精确性意味着在保留骶髂关节和避开神经血管结构的同时,可以安全地切除肿瘤。术后患者经历了快速的康复期。 总结 3D LifePrints目前的应用和正在开发的专科手术领域,以及它们通过嵌入式中心密切参与临床站点,展示了将患者数字化、设备产品和服务带向即时医疗的巨大潜力。Simpleware软件可以支持3D LifePrints实现快速高效的工作流程,通过医学影像到3D打印等虚拟方法帮助改善患者治疗。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/oncological-surgical-planning.html

患者颅缝早闭矫正的计算模拟

Posted · Add Comment

概述 人字缝早闭型颅缝早闭(LC)是一种罕见的非综合征型颅缝早闭,特征是出生时头后部人字缝融合。虽然有像弹簧辅助颅成形术这样的手术选择,但美学效果通常并不理想。为了解决这个问题,研究人员开发的 LC 颅骨参数化有限元(FE)模型可以用来优化将来的弹簧手术。 选择三名接受弹簧辅助颅成形术的患者作为研究对象,在 Simpleware 软件中由他们术前 CT 数据创建颅骨结构模型。然后模拟比较术前 CT 图像和手术的颅骨生长,通过在虚拟场景中重现这一过程,可能有助于改善未来的 LC 手术。 亮点 为了更好地理解颅缝早闭的干预措施,在 Simpleware 软件中使用CT图像创建FE模型在 Simpleware CAD 模块中比较颅骨生长的表面偏差模拟用于比较术前 CT 成像、手术干预和术后干预目标是改善未来的外科实践 数据获取与重建 3 例因颅骨形态异常的 LC 患者在英国伦敦大奥蒙德街医院颅颌面外科接受了弹簧辅助颅成形术,并在术前和术后进行头部 CT 扫描。将 CT 图像导入 Simpleware ScanIP 软件中重建这两个不同阶段的颅骨,经过分割和处理以确定颅骨至上颌骨及骨缝结构的骨骼。 图:使用 Simpleware 软件从 CT 图像重建患者术前和术后的颅骨模型 为模拟划分网格 在 Simpleware FE 中采用结构化的 3D 四面体单元生成颅骨的有限元(FE)模型,对不同的解剖区域赋予合适的材料属性建模。在对颅骨模型进行截骨之前,通过使用热膨胀系数在 MSC Marc 中近似模拟术前成像和手术之间的颅骨生长。将颅内体积(ICV)作为表示不同阶段颅骨大小的参数,包括在 Simpleware ScanIP 中通过选择颅顶内表面进行术前CT重建。 通过在 Simpleware ScanIP […]