非平衡态格林函数方法计算引擎

Posted · Add Comment

概述 非平衡态格林函数(NEGF)方法,是研究具有开放边界条件的双端半无限电极电极模型的有力工具,现已经成为在原子尺度上模拟器件体系电子输运性质的标准工具。该方法将 DFT-LCAO 或 SemiEmpirical方法与 NEGF 方法结合进行自洽计算,得到器件体系在非平衡态(非零偏压)下的电子态,并由此得到电子在器件散射区的透射概率谱,进而分析电子输运性质。 NEGF方法研究双电极体系 非平衡态格林函数(NEGF)描述散射区电子分布,包括与两个半无限电极(源漏电极)的自能耦合 开放边界条件(Dirichlet/Dirichlet)允许在源漏之间施加有限偏压,并计算伏安特性(IV 曲线) 包括电极电子态混入器件区域对电子密度和矩阵元的贡献 对开放体系使用电子自由能取代总能 可以处理两端不同的电极(允许研究孤立的界面,例如金属-半导体界面、p-n 结) 可以添加静电栅极,研究晶体管特性 NEGF 方法研究单表面体系 NEGF 方法描述表面层,包含与单个半无限基底耦合的自能项(不使用近似的 slab 模型,对表面的描述更接近物理实质) 无限基底和表面上方的真空分别使用合适的边界条件,可以进行表面非零偏压的计算 计算性能和稳定性选项 非平衡态(有限电压)下的散射态方法快速求算 Contour 积分 O(N) 格林函数计算和稀疏矩阵描述中心区域 双、单半圆 contour 积分方法以获得有限偏压下的最大的稳定性 Ozaki contour 积分方法,包含深能级 稀疏自能矩阵方法,节约内存 可选择将自能临时或者永久保存在硬盘(而不是RAM),供其他计算使用 自适应(非常规)k点积分计算透射系数 最小电极概念 电极缩减到最小重复单元,计算自能时自动重复 节约电极计算时间O(N3) 应用 电子输运与器件性能仿真工具 材料表面的建模和模拟工具 材料界面的建模和模拟工具 参考 QuantumATK中的NEGF方法技术细节(英文) 立即试用 QuantumATK! 下载QuantumATK软件安装包 申请QuantumATK的全功能试用许可  

超快的HSE杂化泛函计算

Posted · Add Comment

概述 HSE 06 杂化泛函是计算半导体带隙的常见方法,但该方法过去一直受限于计算速度非常慢的因素,只能用于很小的体系计算,无法用于快速的材料筛选。QuantumATK 的最新版本 (R-2020.09)将 HSE 与 LCAO 基组结合实现超快的杂化泛函计算,同时又保持了HSE对半导体带隙的计算精度。HSE-LCAO 方法目前应用于块体体系主要用于块体体系的电子态和光学性质的计算。 半导体带隙。对半导体材料的单胞带隙验证计算结果如下。 计算速度。53 硅原子(B 掺杂)体系的态密度计算 4 核并行计算时间仅须 22 分钟,而使用平面波方法可能需要 2 天。 应用   半导体缺陷。结合 QuantumATK 中提供的 Sentaurus Materials Work Bench 工具,可以直接研究半导体带电点缺陷形成能等重要性质。 能带排列。结合 QuantumATK 提供直接计算 LDOS 能带排列的计算和作图工具,可以将将此方法用于界面体系可以很方便的研究不同材料间的能带排列,下图是使用 HSE 和 PBE 计算结果的对比。 超大多层堆叠。HSE-LCAO应用于 1969 个原子的的半导体中典型的堆叠体系(Si|SiO2|HfO2|TiN),仍然可以使用较少的计算资源(48 核心)在短时间(16小时)内完成计算,得到直观的能带排列图。 参考 QuantumATK R-2020.09新版发布 Sentaurus Materials Workbench简介 立即试用 QuantumATK! 下载QuantumATK软件安装包 申请QuantumATK的全功能试用许可  

光伏材料的计算模拟与器件仿真

Posted · Add Comment

概述 光伏材料与器件是实现太阳光能直接转化为电能的一种重要途径,更广泛的光电转换材料与器件则可以应用于光信号传感器等领域。基于半导体材料构造的异质结构是这类材料应用的关键,一般来说影响光电转换效率的因素有:材料吸光能力、电子空穴对分离效率、载流子迁移效率。使用 QuantumATK 可以方便的研究: 半导体材料的准确带隙和光吸收 包含超快的HSE06杂化泛函方法和快速的k空间采样方法,可以轻松计算千原子体系 半导体材料的载流子有效质量和迁移率 采用完整的电声耦合方法 半导体异质结构的能带排列 采用界面模型直接计算,不必考虑真空能级校正等复杂处理 异质结器件的光生电流和开路电压 直接得到光电流谱和太阳光照下的电流密度 可以直接考虑光电转换过程中的温度效应 构造机器学习模型,快速预测复杂体系的成分与结构 应用案例 实例1:二维材料的结构电子态模拟 论文作者对实验上得到的多层结构进行了模拟,得到了与实验一致的结果。文中使用DFT-D2范德华力泛函(注:QuantumATK最新版现已支持DFT-D3)对结构进行了优化,用GGA进行了结合能的计算,使用MetaGGA进行了精确带隙的计算。作为比较,又使用HSE06杂化泛函的DOS计算。注:新版的QuantumATK中LCAO基组已经支持HSE06杂化泛函,并能够进行超快的电子态计算。 详见: 用石墨烯包裹实现二维氮化镓(Nature Materials, 2016) 超快速的HSE杂化泛函计算半导体准确带隙 实例2:机器学习研究钙钛矿光伏材料的稳定性和带隙 钙钛矿的成分调控让人们能够精确控制其在光伏应用所需的材料性能。然而,同时解决效率、稳定性和毒性仍然是很大的挑战。混合的无铅钙钛矿和无机钙钛矿最近显示出了解决此类问题的潜力,不过它们的组分空间巨大,即使采用高通量方法也很难发现有希望的候选结构。此项研究通过使用由密度泛函理论生成的344个钙钛矿的新数据库,使用与元素无关的通用指纹信息的机器学习方法可以快速而准确地预测关键属性。使用验证子集预测的带隙、形成能、和凸包距离分别在146 meV、15 meV/atom 和 11 meV/atom 内。得到的模型可以用于预测完全不同的化学组分空间中的趋势,并进行快速的组成和结构空间采样,而无需进行昂贵的从头算模拟。 详见:机器学习研究钙钛矿材料的稳定性和带隙 实例3:界面处能带收窄导致CZTS太阳能电池开路电压损失 Cu2ZnSnS4(CZTS)是很有前景的薄膜光电功能材料。目前 CZTS 体系主要的问题是开路电压(OCV)很低,并且原因不明。本文从另外的角度来解释 OCV 损失。研究者使用 QuantumATK 计算了 CZTS 和 CdS 之间界面处的电子态(能带对齐)情况,并在界面处发现了一处很小的局域化的界面态。在进行器件级别模拟时,此界面态导致了显著的 OCV 衰减,本文给出的计算结果与文献中报道的目前 CZTS 光电池器件测量结果定量的吻合。 详见:界面处能带收窄导致CZTS太阳能电池开路电压损失 实例4:电子输运与载流子性质 QuantumATK支持直接计算材料中的电声耦合,并得到载流子的输运性质,包括费米面形状、载流子有效质量、载流子迁移率、霍尔系数、热电塞贝克(Seebeck)系数等。这对评估电子材料的可用性提供了直接的标准。 详见: 第一原理方法计算电子-声子耦合和电子迁移率 考虑电声耦合效应能够准确和高效的计算电阻率和迁移率的新方法 实例5:半导体异质结的光生电流与温度效应 QuantumATK支持直接构造异质结模型,计算在特定频率或太阳光谱照射下的光电流密度,并进一步得到开路电压;在此基础上,可以采用QuantumATK特有的STD方法考虑温度(电声耦合)效应,得到的温度对开率电压的影响与实验吻合非常好。 […]

神经毒剂模拟物甲基对氧磷在光活性纳米织物上选择性可见光驱动毒性降解(Appl Catal B-Environ 2020)

Posted · Add Comment

本文亮点: 利用静电纺丝技术制备了可见光催化纳米织物 这种纳米织物是以铌酸铁和聚己内酯为基底 结果表明,它对甲基对氧磷具有极强的解毒选择性 光生H+和•OH自由基是导致神经毒剂破坏的原因 通过DFT进行理论计算证实了纳米织物的效率 巴西米纳斯吉拉斯联邦大学化学系、物理系、冶金与材料工程系、理工学院多个课题组联合研究,以聚己内酯(PCL)和固化铌酸铁(NbOFe)纳米粒子为基底,采用静电纺丝技术制备了一种高效的光催化纳米织物(NbOFe-NF),并将其应用于高神经毒性化学战剂甲基对氧磷(MP)的光降解。其中光催化试验没有任何溶剂参与,仅仅依赖于织物、基底和可见光辐射。结果表明,光催化48小时,MP的转化率为94.5%。此外,还发现光活性纳米织物具有极强的选择性,可将MP及其原始有机磷产品转化为毒性较小的化合物。整个过程完全是光催化的,通过环境湿度产生H+和•OH自由基。 理论研究中,使用AMS-BAND进行计算,电子轨道使用未收缩的STO基组TZ2P展开,该基组具有三重ζ,并为每个原子增加了两组极化函数,并使用ZORA方法考虑相对论效应。几何结构优化和能量计算GGA-OLYP获得,对MP在铌酸铁表面吸附的能量分布进行了计算研究。为了模拟非晶态结构,在材料结构中保留了与氢结合的氧原子。在AMS中建立了(001)表面的平板模型,并创建超胞,游离MP分子在相应的表面进行了结构优化,仅吸附于平板的一侧。BAND在二维、一维材料表面吸附计算的精度与效率,均高于平面波方法。 参考文献: Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric, Applied Catalysis B: Environmental, Available online 9 December 2020, 119774

热输运计算与机器学习耦合设计热功能材料

Posted · Add Comment

本文报道的研究采用了材料信息学(MI)方法(即结合了材料性能计算/测量和信息学算法)实现了热功能材料纳米结构的特性的计算优化,这是基于物理直觉和模型的经验方法难以获得的。此研究以一个超晶格结构的优化问题为例,介绍将热输运计算和机器学习相结合的 MI 的基础知识和技术程序,总结了描述符、目标函数、特性计算工具、机器学习(Bayesian optimization)算法和优化效率的细节,并成功地应用于热电材料和热辐射材料的设计。 在过去的几十年里,各种热输运的计算和实验技术在纳米尺度上得到了发展。一般来说,这类知识都是基于四个维度(时间和空间的三个维度)的热传输物理模型,也是人类更容易理解的。然而,在识别复杂的结构-性能关系时,尺寸可能成为制约因素。另一方面,使用黑箱模型的机器学习在处理大量维度的超空间方面有优势,并且在预测复杂的结构-属性关系方面可能更为优越,唯一的不足可能是它可能无法直接帮助人类理解基本物理问题。随着机器学习和数据挖掘方法的进步,研究人员现在能够从计算或实验数据中构建一个黑盒模型,识别或预测显示出所需特性的纳米结构或材料。因此,它为发现、设计甚至理解新材料提供了巨大的机会。 这种 MI 方法有四个基本要素:目标函数、描述符选择、评估目标函数的性质计算工具和信息学优化方法。文章通过设计超晶格基本结构框架对结构进行了数字化得到了多种结构描述符,采用 QuantumATK 中包含的格林函数方法和 Tersoff 经验力场方法结合计算的体系的导热系数作为优化目标函数,并据此设计了 Bayesian optimization 的流程。作者在文中比较了不同优化方法和不同的结构描述符的优劣,并进一步将导热的优化流程延伸应用于优化石墨烯纳米带的热电品质因数(热电优值)。       原文链接 J. Appl. Phys. 128, 161102 (2020),https://aip.scitation.org/doi/full/10.1063/5.0017042。  

AMS2020发布

Posted · Add Comment

AMS2020对软件整体进行了重构,各模块的整合协同性进一步提高,以AMS引擎统一驱动各个模块。同时也有一些功能上的进展: ADF模块 数值频率、PES等计算,在原先MPI并行的基础上,增加驱动层面的并行,也就是说,可以同时计算多个结构点,而不需要像过去的版本,一个一个点顺序计算(实现方式) 快速G0W0、RPA单点计算 对称性的默认设置改变为Nosymm 增加了元素Uue(Z=119)、Ubn(Z=120)的基组 默认使用Scalar相对论 ADF via AMS整合进入ADF 电荷转移积分,(近)简并能级将会一起得到处理。 BAND模块 增加了元素Uue(Z=119)、Ubn(Z=120)的基组 默认使用Scalar相对论 计算指定k点有效质量 DFTB模块 方法包括DFTB、SCC-DFTB、DFTB3、GFN1-xTB、NonSCC-GFN1-xTB。对多k点体系,GFN1-xTB计算速度大大提高 Machine Learning Potentials 这是一个经验性的第一性原理计算模块 AMS和多个ML Potentials后端之间的接口 预优化按钮增加了ML Potentials中的ANI-1cxx方法 多层计算 轻松地通过分区,实现DFT、MM、ReaxFF、DFTB等任意混合,分区数量没有限制,该功能支持周期性体系。 新的力场包括:UFF、GAFF、Amber、Tripos ReaxFF ReaxFF与ReaxAMS合并,统一使用AMS驱动 支持Bulk(三维)、Slab(二维)、Chain(一维)、None(非)周期边界条件 COSMO-RS 质子化和聚集态:脚本工具处理不同流体相中不同状态,以提高溶解度、pKa和其他热力学预测 分析功能 自相关函数,扩散系数 低频热力学修正

最小冰粒氢键拓扑结构的红外光谱研究(Nat. Comm. 2020)

Posted · Add Comment

水八聚体的立方结构由六个四元环组成的团簇体系,能很好的用来解释氢键拓扑结构细微变化所驱动的协同作用。虽然许多不同的结构被预测出来,但从振动光谱中提取出结构信息仍待实现,这需要电中性团簇的尺寸选择性具有足够的分辨率来识别不同异构体的贡献。清华大学/南方科技大学李隽课题组、胡撼石课题组、中国科学院大连化学物理研究所杨学明课题组、张东辉课题组和江凌课题组报导了使用可调真空紫外自由电子激光器阈值光离子化方案,测得孤立的冷冻、电中性八聚水的特定尺寸红外光谱,结果观察到大量的尖锐振动带特征。 对红外光谱的理论分析表明存在五个立方异构体,其中两个具有手性。这些结构的相对能量反映出不同的拓扑相关、离域多中心氢键作用。这些结果表明,即使有共同的结构特征,氢键网络之间的合作程度差异也导致了不同层次的结构。 为了解水八聚体的电子结构,作者利用离域定域分子轨道(LMO)理论分析了立方异构体的氢键网络,进行了自然键轨道(NBO)、自适应自然密度分配(AdNDP)、能量分解分析-化学价自然轨道(EDA-NOCV)和主相互作用轨道(PIO)等分析。 利用AMS软件ADF模块,在GGA-PBE/TZ2P水平上,利用EDA-NOCV分析了立方异构体中氢键相互作用的的本质。EDA-NOCV方案提供了关于化学键中轨道相互作用强度和贡献的定性(Δρorb)和定量(ΔEorb)信息。 参考文献: Gang Li, Yang-Yang Zhang, Qinming Li, Chong Wang, Yong Yu, Bingbing Zhang, Han-Shi Hu, Weiqing Zhang, Dongxu Dai, Guorong Wu, Dong H. Zhang, Jun Li, Xueming Yang & Ling Jiang, Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube, Nature Communications volume 11, Article number: 5449 (2020)

双(三氟甲磺酰基)酰亚胺阴离子与被吸附二氧化碳之间相互作用(Communications Chemistry 2020)

Posted · Add Comment

离子液体(ILs)的二氧化碳(CO2)选择性吸收特性与CO2捕集方法的发展密切相关。尽管有报道称氟化组分使ILs增强了CO2溶解度,但深入理解ILs与CO2之间的相互作用一直是一个挑战。在本研究中,作者利用软晶质材料[Cu(NTf2)2(bpp)2] (NTf2‒ = bis(trifluoromethylsulfonyl)imide, bpp = 1,3-bis-(4-pyridyl)propane)作为单晶X射线衍射分析的替代物,将CO2与NTf2‒(氟化离子液体组分,导致二氧化碳高溶解度)之间的相互作用可视化。对负载二氧化碳的晶体结构的分析表明,CO2与NTf2‒阴离子的氟原子和氧原子以反式而非顺式结构发生相互作用。对负载CO2的晶体结构的理论分析表明,CO2与骨架之间存在色散和静电相互作用。总而言之,为理解和改进离子液体吸收二氧化碳的特性提供了重要的见解。 使用AMS-ADF优化添加H原子的结构(PBE-D3(BJ)/TZ2P),并使用能量分解方法(EDA)结合化学价态理论的自然轨道对模型(NOCV)结构进行了分析。 参考文献: Xin Zheng, Katsuo Fukuhara, Yuh Hijikata, Jenny Pirillo, Hiroyasu Sato, Kiyonori Takahashi, Shin-ichiro Noro & Takayoshi Nakamura, Understanding the interactions between the bis(trifluoromethylsulfonyl)imide anion and absorbed CO2 using X-ray diffraction analysis of a soft crystal surrogate, Communications Chemistry volume 3, Article number: 143 (2020)  

OLEDs双极性磷光基质材料的XPS和NEXAFS研究

Posted · Add Comment

单通道的Kohn-Sham DFT理论结合跃迁势(Transition Potential),能够考虑核空穴形成的大部分的电子弛豫效应,从而描述轻原子的K-壳层NEXAFS光谱。这种方法提供了一组正交轨道,从中可以得到跃迁偶极矩。 K壳层NEXAFS光谱是通过对每个非等效原子位的激发光谱进行单独计算,并将其贡献按相对权重相加得到的。这样就可以将总的光谱性质反卷积到不同组分中,从而有助于将光谱特征分解到分子的特定部位。 这种方法,最近被应用到2,8-bis-(diphenylphosphoryl)-dibenzo[b,d]thiophene(PPT)的C1s和O1s NEXAFS光谱的模拟,这是最近引入OLED中的一种双极性磷光主体材料,用于解释在Trieste的电子同步加速器气相束线处获得的实验光谱。PPT可以认为是由两个二苯基氧化膦(dPPO)部分,对小二苯并噻吩(DBT)核心官能化而形成。 在C的K-边的DFT-TP计算表明,PPT的C1s谱主峰归属于dPPO臂的苯环,而第二弱峰则归属于PPT DBT核的苯环部分。 本研究的结论对OLED的未来应用具有重要意义:PPT的氧化膦基团是PPT的DBT核与外层基团之间π共轭的断裂点。然而,这些基团在很大程度上不影响DBT中心部分的电子性质。 参考文献: A. Guarnaccio, T. Zhang, C. Grazioli, F. Johansson, M. Coreno, M. de Simone, G. Fronzoni, D. Toffoli, E. Bernes, C. Puglia, PPT Isolated Molecule and Its Building Block Moieties Studied by C 1s and O 1s Gas Phase X-ray Photoelectron and Photoabsorption Spectroscopies,  J. Phys. Chem. C […]

Sentaurus Materials Workbench简介

Posted · Add Comment

Sentaurus Materials Workbench(SMW)是基于 QuantumATK 提供的一套用于半导体材料模拟的工具套件,可帮助您创建材料参考模型,并使用 DFT 计算或经验势或两者来为原子水平计算设置输入文件。 SMW 可以自动生成缺陷,并包括多种技术和方案以提高计算的准确性。 SMW 包含以下功能模块: 材料技术参数(MaterialsSpecification) 使用 MaterialSpecifications 对象,您可以为计算定义计算设置。 Sentaurus Materials Workbench 带有一个MaterialSpecificationsDatabase,该数据库包含预定义的行业相关材料的的技术参数。 该数据库可以作为多数应用的起点。 MaterialSpecifications MaterialSpecificationsDatabase 能带校正(Bandstructure calibration) SentaurusBandstructureCalibration 用于将能带模型(有效质量、k.p等)的参数校准到第一原理计算的数值,这些参数可以用于Sentaurus工具的模拟。该工具支持硅的纳米线或纳米薄片。 Wire Slab SentaurusBandstructureCalibration SentaurusWireEffectiveMassModel SentaurusWireKdotPmodel SentaurusSlabKdotPmodel 单个缺陷参数和收敛性研究 ChargedPointDefect 工具可以研究多种缺陷和超胞大小的形成能和捕获能级,包括: DefectCluster Interstitial SplitInterstitial Substitutional Vacancy 这些计算都是通过 ChargedPointDefect 完成的。 能带示意图提取 BandDiagramExtraction 可以从多层 2D 结构的第一原理计算中提取能带示意图。可以提取每层中的平均导带/价带边缘,带隙和功函数/电子亲和能。 为了提取功函数,需要计算真空能量。 为了计算每一层的真空能,将多层结构分为具有真空的单层。 缺陷特征和迁移 缺陷的迁移是用在初态和终态之间的 NEB 计算完成的。 TransitionPathList […]