单分子反应的电场诱导选择性催化(Sci.Adv.2019)

Posted · Add Comment

引言 随着单分子电学检测技术的迅速发展,分子电子学的研究已不再局限于分子电子学器件的构筑及其电学性质的测量,而是扩展到单分子尺度化学反应过程的探索。单分子裂结技术能够直接观察单个分子的始态、终态和中间态,采用此技术并通过施加定向外部电场,有望实现对单个分子乃至单个化学反应的操纵和调控,从而在纳米尺度的反应器中实现对单个分子化学反应速率的选择性调控,为未来基于清洁能源的绿色化学合成提供了新思路。近日,厦门大学洪文晶教授、程俊教授和兰州大学张浩力教授在电场选择性调控特定化学键的反应速率研究方面取得重要突破。相关研究成果以“Electric-field-induced selective catalysis of single-molecule reaction”为题发表于Science Advances。 成果简介 针对这一挑战,该研究团队自主研发了高强度定向电场下研究化学反应速率的精密科学仪器技术,将单个有机分子定向地连接在两个原子级尺寸的电极之间,从而解决了化学反应中分子取向控制的问题。通过电极对单个分子施加了高达108-9 V/m的定向电场和对反应的分子计数,精确测量了两步连续反应中每步的反应速率。在纳米尺度反应器内中发现:若施加电场与反应轴垂直,电场对化学反应没有影响;如果电场在反应轴方向有分量,电场可以使反应速率提升超过一个数量级。通过单分子器件电输运模拟证实了化学反应路径的中间态;过渡态计算结果表明定向电场可以有效地稳定化学反应的过渡态,从而降低反应能垒。 这一跨学科合作,在国际上首创了利用定向外部电场选择性调控化学反应速率的仪器和技术,实现外加电场对化学反应的有效调控,提出了将外加电场作为智能催化剂创新思路,对基于清洁能源的绿色化学合成和化工清洁生产的发展具有重要意义。 参考文献 X. Huang, C. Tang, J. Li, L. C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen, M. Bai, H. L. Zhang, H. Xia, J. Cheng, Z. Q. Tian and W. Hong. […]

具有多通道电输运性能的空间共轭单分子并联电路 (Angew. Chem. Int. Ed. 2020)

Posted · Add Comment

引言 目前,传统硅基芯片的性能已经逐渐接近其理论极限,为了适应科技的飞速发展,芯片革命已经势在必行。有机分子具有尺寸小、结构多样以及可通过辐射减少发热等特性,有极大的希望被应用于制备集成度更高、性能更强、散热更好的新一代微型芯片。对于有机分子器件而言,实现高效且可控的分子电导是一个巨大的挑战。理论上,电极之间分子的导电通路越多,就越容易实现高的电导,但是迄今为止,多通道的分子器件仍鲜有报道。近日,华南理工大学唐本忠院士团队赵祖金教授等开发了一种新型的单分子并联电路,利用价键共轭导电通道和空间共轭导电通道之间的协同作用,实现了优异的单分子电输运性能,为开发新一代多功能可控型分子器件提供了新的思路。 成果简介 研究人员成功制备了基于两条四联苯共轭链构建的折叠型分子 f-4Ph-4SMe,两条链末端共修饰有 4 个甲硫基,中间有一个双键对两条链进行连接和固定。晶体结构显示该分子具有规整的折叠构型,两条四联苯链近似平行地紧密排列,链间距约为 3.30 Å,因此两条链之间存在着较强的相互作用。4 个甲硫基可以与 2 个金电极相连接形成单分子结,类似于一个并联电路。溶液态的扫描隧道显微镜裂结(STM-BJ)测试结果显示 f-4Ph-4SMe 中存在着多种差异显著的电导态,该结果与单分子层状态下的测试结果相一致。结合理论计算,研究人员发现实验中测得的不同电导态是由于折叠分子与金电极之间形成的不同连接方式所导致的。当4个甲硫基全部与电极连接时,分子表现出最大的电导(10-4.4 G0);当 3 个甲硫基与电极相连时,分子电导次之(10-4.69 G0);当同一四联苯链上的2个甲硫基(如图中的 A1A2)与电极连接时,分子电导更小(10-4.94 G0);当不同链上处于对角线位置的 2 个甲硫基与电极相连时,电导最小(小于检测限 10-6.0 G0)。该研究结果也与另外两个仅具有 2 个甲硫基的对比分子的电导性能相一致。 为了进一步研究 f-4Ph-4SMe 的最高电导态,研究人员结合密度泛函理论(DFT)研究了分子的电子结构。同时,结合非平衡态格林函数(NEGF)方法,研究者们计算了分子在电极之间的透射谱以及电子在电极之间传输时的透射路径。结果显示,由于 f-4Ph-4SMe 的两条四联苯链之间具有很强的空间共轭作用,前线轨道的电子云相互交叠,产生了通过空间而不经过化学键的导电通道,使得该折叠分子不仅具有沿着四联苯骨架的价键共轭导电通道,而且在两条四联苯之间形成了空间共轭导电通道。当上下两条四联苯链同时与金电极连接并导通时,价键共轭和空间共轭通道协同作用,产生了1+1>2 的效果,从而使 f-4Ph-4SMe 分子具有优异的导电性能。当与电极连接的甲硫基减少时,所形成的导电通道也随之减少,分子导电性能也随之下降。 该研究为人们理解电子在π-π 堆叠的分子体系中的传输机制提供了一个理想的模型。研究也表明,具有多锚定基团的分子导线与电极的不同链接方式将导致不同的导电性能,为实现单分子电导的可控性提供了思路。文中所提出的新型单分子并联电路对于开发性能可调的单分子器件具有重要的借鉴意义。 参考文献 Shen, M. Huang, J. Qian, J. Li, S. Ding, X. -S. Zhou, B. Xu, Z. Zhao, B. Z. Tang. Achieving efficient multichannel conductance in […]

“OLED从分子到器件”—SCM与Simbeyond合作开发多尺度模拟平台

Posted · Add Comment

在荷兰企业管理局的支持下,OLED模拟软件开发商SCM与Simbeyond于2020年1月启动联合研发项目,结合两者多年来在分子模拟与有机器件方面所长,开发世界上第一个完全集成的OLED多尺度模拟平台,用于OLED领域在工业和学术科学方面的研究。SCM公司与Simbeyond公司分别擅长OLED在分子级别的模拟与材料器件级别的模拟。 界面友好、工具可靠,对基于模拟的创新研究有着关键的作用。该计划将为研究人员提供一个强健、易用的解决方案。对用户而言,不需要在模拟方面很多多专业知识,该平台也绝不是代码的简单堆砌。通过“流水线”式地将SCM的AMS软件输出作为Simbeyond的Bumblebee软件输入,减少人力干预,节省计算开销,提高精度。 在这样的“工具链”中,用户能够预测各种材料结合各种堆栈结构得到的器件性能,大大加快OLED材料与器件的预测与筛选。 关于Simbeyond Simbeyond的产品Bumblebee是最先进的动力学蒙特卡洛模拟程序,用于模拟无序系统(如OLEDs、OPV、OFETs)中的光电过程。它能够在分子尺度上,在三个维度上,从纳秒到整个器件寿命时间尺度,模拟OLED中所有的电子与激子过程之间的相互作用。基于实验测量和量子化学计算得到的材料参数,预测器件的电学性能、效率、颜色点和寿命。

在线课程:第一性原理方法模拟材料光学性质

Posted · Add Comment

本次在线课程介绍如何使用 QuantumATK 提供的各种光学和电-光学性质模拟和分析工具研究块体材料、二维材料和纳米线。这些工具在表征新材料时至关重要,尤其是在局部结构环境里提取振动、化学成分、异质性、应力、结晶度、电子-声子耦合、简谐性、材料相结构等信息。 时间:2020年2月19日,下午4点(北京时间);时长30分钟(含答疑) 语言:英文(讲解与答疑) 报名链接:点此注册 注册后,您会收到一封确认邮件,告知如何参加此次课程。如果有任何疑问,请联系quantumatk@synopsys.com。 详细内容 了解如何通过简单的设置进行光学和电-光学分析计算: 拉曼光谱:偏振谱(一个或多个入射和散射夹角)或偏振平均谱 红外光谱 折射率、消光系数、反射率、极化率和光导率 计算金属带内贡献的光谱 二阶极化率 电-光学张量 了解如何使用非常便捷工具分析不同声子对光学性质的贡献,研究极性材料中离子对光学性质的贡献,研究电声耦合 了解如何使用直观的 NanoLab GUI 对光学性质模拟结果进行作图和分析。 更多信息 QuantumATK Q-2019.12新版发布说明 电子光谱(手册) 拉曼光谱(手册) 注册链接 点此注册 立即试用 QuantumATK! 下载QuantumATK软件安装包 申请QuantumATK的全功能试用许可  

用活化畸变模型理解化学反应性 (Nat. Protoc. 2020)

Posted · Add Comment

荷兰自由大学F. Matthias Bickelhaupt与Trevor A. Hamlin课题组最近提出了基于活化畸变模型(Activation Strain Model, ASM)的化学反应性研究方法,基于该模型的化学反应分析工具PyFrag 2019发布于材料化学模拟平台Amsterdam Modeling Suite(简称AMS) 2019.3版中。这种最先进的计算技术能够协助化学家们预测化学反应性,并合理设计新的化学反应,普适于所有反应类型,包括无机、有机、超分子、生化等领域。其他方法只分析势能面上某一个驻点,而该方法对反应坐标沿路能量的变化进行分析。 ASM方法基于ADF模块(或BAND模块)非常经典的片段分析功能,主要基于: 反应物分子从单独存在时的能量最低结构,形变到反应要求的结构所需的能量 变形的反应物分子间的相互作用能 这种方法让用户能够洞察决定反应能垒的诸多要素,以及化学反应性趋势。ASM虽然已被多篇综述介绍(Chem. Soc. Rev. 43, 4953, 2014;WIREs Comput. Mol. Sci. 5, 324, 2015;Angew. Chem. 129, 10204, 2017),但尚缺乏具体的清晰的使用步骤指南,因此作者在本文中以AMS软件中的ADF模块为例,介绍ASM的应用步骤。对于周期性体系而言,该方法同样适用,只是对应使用AMS软件中的BAND模块。之所以使用AMS软件,是因为该软件支持: 与ASM匹配的能量分解分析(EDA):将ASM得到相互作用能分解为几项具有明确物理含义的能量项(具体含义参考:能量分解分析(EDA),或本文介绍文献的原文) 分子轨道分析:将分解得到的各能量项与反应物分子轨道联系起来 路线图如下: 以甲基叠氮与环庚炔、环壬炔的反应为例: 上图中ASM-EDA分析中得到的能量项,被投影到新形成的C····N键平均距离。该距离是这一类反应的关键反应坐标,直接与反应过程相关。得到的活化应变图表明,环壬炔的环加成势垒比环庚炔高。由于二者的形变能ΔEstrain曲线几乎重叠,因此相互作用能ΔEint的大小趋势决定了反应能垒的大小趋势。进一步分析ΔEint各分项的趋势,发现泡利排斥能或多或少被静电相互作用能ΔEelstat抵消(上图d)。另一方面,轨道相互作用ΔEoi对总的相互作用能趋势,即反应能垒的趋势,起到决定性作用。 Kohn-Sham分子轨道分析印证了ΔEoi趋势的合理性:环庚炔、环壬炔,何者的预形变或弯折越大,则其的FMO(碎片分子轨道) Gap就越小,同时空-占轨道重叠越强(注意这里的空、占轨道是指发生相互作用的分子轨道,一定是某个分子的占据轨道与另一个分子的空轨道),越利于反应。与环壬炔相比,环庚炔的形变程度更大,导致其HOMO稳定性更低(从而能量越高,反之亦然),LUMO稳定性更高,从而导致FMO Gap更小。另外,环庚炔形变更大,从而导致其HOMO、LUMO朝向甲基叠氮部分与甲基叠氮LUMO、HOMO的重叠比环壬炔更大。所有这些因素叠加在一起,导致环炔越小,轨道相互作用越强。 PyFrag 2019使用手册,参考:https://www.scm.com/doc/ADF/Input/PyFrag.html Pascal Vermeeren, Stephanie C. C. van der Lubbe, Célia Fonseca Guerra, F. Matthias Bickelhaupt & Trevor A. Hamlin,  Understanding chemical […]

聚合物体系的模拟方法与应用

Posted · Add Comment

概述 聚合物材料建模与聚合物工程的热-力学和其他性质的模拟,与无机材料、有机小分子材料有很大的不同,一方面,聚合物分子巨大的分子量和链内巨大的自由度给原子级的建模和计算带来很大的困难;另一方面,聚合物体系有许多独特的热-力学特性,例如玻璃化转变、粘弹性和动态模量等等;聚合物链段与其他链段、小分子、表面、纳米粒子的相互作用也与其他有机物体系区别很大。 QuantumATK 提供了友好的工具支持构建各种聚合物模型,例如热塑性高分子,线性的均聚物、共聚物,聚合物熔体、嵌入小分子的聚合物、与纳米粒子、表面结合模型,等等。构建的聚合物模型可以直接使用软件提供的多种方法(基于Dreiding、OPLS-AA力场)进一步的平衡化,包括使用 force-capped-equilibration 作为初始平衡化方法、single-chain mean field(SCMF)方法、21步聚合物平衡化自动化流程工具,等等。平衡化后的聚合物可以用多种工具进行性质模拟,例如 NVE、NVT、NPT 系综的分子动力学(MD),用来模拟长时域动力学的 time-stamped force-bias Monte Carlo 方法,以及用于模拟热传导的非平衡态动量交换方法。 常用工具 自动化无定形聚合物模型建模工具 支持图形用户界面(GUI)和 Python 脚本的自动化工具 丰富的模拟方法 自动力场生成,支持 DREIDING OPLS-AA 电荷平衡化可以使用 Qeq 和 ReaxFF 电荷平衡化方法 参考链接: 聚合物建模教程 聚合物模拟相关的工具 应用 EUV光阻剂 热-力学性能 玻璃化转变,弹性,动态模量,粘度 热传导 聚合物相容性 研究聚合物在高形变、高剪切速率,高加热/冷却速率下的性能 模拟特定化学组分的聚合物体系 聚合物链段之间相互作用、聚合物链段与其他分子的相互作用 包裹在纳米粒子、表面周围的聚合物熔体 聚合物模拟的流程 蒙特卡洛方法聚合物链建模工具,Force-capped-equilibration,SCMF equilibration,聚合物体系热传导等都是与聚合物有关的新增方法。 可以模拟的聚合物体系 热塑性塑料 线性均聚物和共聚物 聚合物单链和熔体 控制立构规整度、单体比例和端基 与单分子、纳米粒子,表面复合模型 用户自定义单体结构 生成的模型可以立即用于进一步的平衡化和模拟 聚合物平衡化自动化流程工具 按照交替使用 […]

使用巨正则系综反应力场模拟铂电催化剂的氧化与失活(Small 2019, Angew. 2017)

Posted · Add Comment

铂基纳米颗粒电催化剂是目前应用领域最广的氧还原催化剂,在金属-空气电池,等离子体催化,以及质子交换膜燃料电池等领域均有应用。由于贵金属成本高昂,燃料电池要得到广泛应用,就必须优化这些贵金属材料的使用效率。目前最主要的努力方向,是增大阴极氧还原反应活性,以及通过最大限度地减少失活、减少Pt负载提高寿命。与非铂族金属形成合金,或者通过改变催化剂纳米粒子形状,裸露不同类型的表面、边缘、扭结以及其他低配位位点,从而控制反应活性和选择性,都非常有效。 在这些研究中,计算模拟扮演了非常重要的角色。冰岛大学(UI)Donato Fantauzzi课题组与德国卡尔斯鲁厄理工学院(KIT)Timo Jacob课题组,通过理论模拟与实验结合研究表明,近环境压力下单晶Pt(111)面上确实存在稳定的表面氧化物,并且对其电催化行为有潜在的影响。Seriani等人通过DFT计算表明,数层Pt3O4在Pt(100)表面具有热力学稳定性,并对甲烷再离解具有催化活性。深入研究表面氧化物对催化的影响,对提高材料催化活性意义重大。 Donato Fantauzzi课题组与Timo Jacob课题组使用了巨正则系综(GCMC)与反应力场(ReaxFF)相结合的方式,研究了铂纳米粒子的氧化。模拟模型为2~4nm的立方颗粒,该尺寸与燃料电池中实际使用的尺寸相当。尺寸过大,计算成本也会更大,尺寸过小可能导致该力场有效性得不到保证(原因详见原文)。通过两相热化学(2PT)方法得到显式溶剂化和热化学贡献,确定了热力学上最稳定的氧化物结构,进一步得到了更精确的能量数据,并使用扩展从头算热力学(EAITD)构建了电位相关相图。 结果表明,铂纳米颗粒的氧化始于纳米粒子的边缘和顶点,(111)面表现出令人惊讶的抗氧化能力。与标准氢电极(SHE)相比,在0.8~1.1 V之间(与典型燃料电池环境一致),表面氧化结构是稳定的。这表明,干净的金属表面可能不适合作为铂氧化催化剂的模型体系。完全氧化后,纳米颗粒裂开成Pt6O8单元。DFT计算发现这些[Pt6O8]4-具有高稳定性、亲水性。因此认为[Pt6O8]4-承担了燃料电池中离子铂的输运,从而对燃料电池催化剂失活扮演了重要角色。 文献: Growth of Stable Surface Oxides on Pt(111) at Near‐Ambient Pressures, Dr. Donato Fantauzzi Sandra Krick Calderón Dr. Jonathan E. Mueller Mathias Grabau Dr. Christian Papp Prof. Dr. Hans‐Peter Steinrück Dr. Thomas P. Senftle Prof. Dr. Adri C. T. van Duin Prof. Dr. Timo Jacob, Angew. Chem. Int. Ed., 2017, 56, 2594 […]

QuantumATK Q-2019.12新版发布

Posted · Add Comment

QuantumATK Q-2019.12 版本已经于近日正式发布,作为新一代的原子级材料与器件模拟平台,新版的 QuantumATK 包含了很多激动人心的新增功能和性能改进。 密度泛函理论(DFT)计算引擎更新 DFT 平面波计算引擎性能显著提升 PAW 势平面波方法正式发布 k.p 方法快速计算能带 新增丰富的光学、电光性质和谱学分析工具 电子光谱带内贡献、拉曼光谱、二次谐波产生(SHG)极化率、红外光谱(含太赫兹区域)、电光张量 磁性体系的 Gilbert damping、轨道磁矩 核磁共振(NMR):电场梯度(EFG)和屏蔽张量 分子动力学工具更新 计算比热、导热、玻璃化转变温度 计算设置和分析工具包含大量易用性更新 全新的聚合物模拟工具 新增聚合物分子、熔体的建模和模拟工具 计算聚合物工程的热-力学和其他性质 众多性能改进 DFT 和半经验 NEGF 计算性能显著改进,可以计算更大的体系 力场经验势的并行效率大大提升,有助于大体系的模拟 图形界面更新 众多作图工具的增强和更新,更加方便的作图、导入导出数据等 新增报告产生工具用于大量模拟计算结果的提取、分析数据和对数据作图,方便、快速 平面波计算引擎日趋成熟 使用模守恒(NC)势和 PAW 势的 DFT 平面波计算引擎性能显著提升 平面波(PW)引擎支持更多计算,默认参数明显改进 可以使用 LCAO 计算对 PW 计算进行初始化,支持多方法混合计算模拟,更好的平衡计算准确性和速度 PAW 势 DFT平面波计算引擎正式发布 PAW 势可以使用比 NC 势更小的截断能得到相同的精度,计算速度有明显优势 提供 GPAW、JTH 两组 […]

AMS2019.301新功能

Posted · Add Comment

第一性原理 1,MP2、SOS-MP2 优点: 对氢键的计算,结合能略高于实验值,而一般DFT则总是倾向于低估,总体而言MP2在这方面优于一般DFT; 计算饱和有机物二聚体尤其精确。计算时,要求TZ2P及其以上的基组。 效率:随着体系的增大,比GGA计算量增大的速度更快,但对一百原子左右的体系,一般的单节点计算耗时也并不太高 支持:EDA、NOCV分析,只支持单点计算 不支持:激发态、极化率、IR、NMR等相关计算。 2,高精度Double Hybrid泛函 优点: 从文献以及厂商测试结果来看,在异构体能量差、能垒、过渡态能量方面有非常显著的改进 在分子间色散作用、非共价作用方面,比色散修正杂化泛函仅有细微改进。 对过渡金属体系,结合ZORA方法,结果相当精确。 效率:对于三四十个原子的体系,计算量比杂化泛函的二倍略小。 用法:大体系的计算,双杂化泛函中,推荐DOD类泛函。一般的计算,根据我们的测试,B2piPLYP、B2KPLYP及其-D3(BJ)色散修正,以及revDSD-BLYP、revDSD-PBEP86,都非常优秀。后两个泛函的DOD变体比DSD变体更精确,更适合大体系计算。总的来说,双杂化泛函对很多体系都能够提供相当高精度的计算,对很多体系,这些不同的双杂化泛函结果差异实际上并不大。 支持:EDA、NOCV分析,只支持单点计算 不支持:激发态、极化率、IR、NMR等相关计算。不要用于HOMO-LUMO gap很小的体系,或者具有多参考态特征的体系。 3,最新色散修正泛函-D4(EEQ) 与D3色散修正相比,D4(EEQ)改善了热化学性质,特别是对含有金属的体系。推荐全面替代D3。 4,AH-FC、VG-FC Adiabatic Hessian Franck-Condon、Vertical Gradient Franck-Condon 5,MESA 新的高效的改进SCF收敛的算法: 6,CI-NEB:应用于各模块 7,添加外部应力 用法参考:BAND、MOPAC、DFTB、ReaxAMS添加外部应力 分子动力学 1,微观反应动力学 Microkinetics 例子:https://www.scm.com/doc/Tutorials/Microkinetics/MKMCXX_CO_Oxidation.html 2,新的分子动力学反应加速算法REMD 用法参考:新的分子动力学反应加速算法REMD。适用于BAND-MD、DFTB-MD、MOPAC-MD、ReaxAMS-MD。 3,ReaxFF中计算热导率的NEMD方法 参考:https://www.scm.com/doc/ReaxFF/Properties.html#nemd-methods-for-thermal-conductivity VASP GUI

在线讲座:QuantumATK Q-2019.12新版发布:新功能与新特色介绍

Posted · Add Comment

时间:2019年12月18日下午16点(北京时间) 时长:45分钟(之后15分钟答疑) 新功能摘要 密度泛函理论(DFT)和性质分析模块更新 平面波计算更新:PAW+HSE计算性能显著改进 使用k.p方法超高效计算HSE能带 新增光学和光谱分析工具,包括拉曼光谱、带内贡献、极化LO/TO劈裂、二阶极化率、红外光谱 Gilbert damping模拟描述磁性体系的自旋动力学 动力学更新 添加可以在MD过程中高频的保存“测量”记录的方法,以及一些MD轨迹作图的其他改善 大大改善了经验力场的并行效率,加速大规模体系的计算 新增创建聚合物模型的高级工具,计算聚合物工程的热-力学和其他性质 图形界面(NanoLab)更新 原子移动工具升级 增强2D作图工具 改进作业管理工具 新增报告生成工具,便于大量模拟任务结果数据的提取、分析、作图   主讲人 Anders Blom博士 Senior Business Development Manager Synopsys QuantumATK Product Group   Vaida Arcisauskaite博士 Senior Scientific Communication Specialist Synopsys QuantumATK Product Group   Umberto Martinez博士 Business Development Manager Synopsys QuantumATK Product Group   报名链接