最小冰粒氢键拓扑结构的红外光谱研究(Nat. Comm. 2020)

Posted · Add Comment

水八聚体的立方结构由六个四元环组成的团簇体系,能很好的用来解释氢键拓扑结构细微变化所驱动的协同作用。虽然许多不同的结构被预测出来,但从振动光谱中提取出结构信息仍待实现,这需要电中性团簇的尺寸选择性具有足够的分辨率来识别不同异构体的贡献。清华大学/南方科技大学李隽课题组、胡撼石课题组、中国科学院大连化学物理研究所杨学明课题组、张东辉课题组和江凌课题组报导了使用可调真空紫外自由电子激光器阈值光离子化方案,测得孤立的冷冻、电中性八聚水的特定尺寸红外光谱,结果观察到大量的尖锐振动带特征。 对红外光谱的理论分析表明存在五个立方异构体,其中两个具有手性。这些结构的相对能量反映出不同的拓扑相关、离域多中心氢键作用。这些结果表明,即使有共同的结构特征,氢键网络之间的合作程度差异也导致了不同层次的结构。 为了解水八聚体的电子结构,作者利用离域定域分子轨道(LMO)理论分析了立方异构体的氢键网络,进行了自然键轨道(NBO)、自适应自然密度分配(AdNDP)、能量分解分析-化学价自然轨道(EDA-NOCV)和主相互作用轨道(PIO)等分析。 利用AMS软件ADF模块,在GGA-PBE/TZ2P水平上,利用EDA-NOCV分析了立方异构体中氢键相互作用的的本质。EDA-NOCV方案提供了关于化学键中轨道相互作用强度和贡献的定性(Δρorb)和定量(ΔEorb)信息。 参考文献: Gang Li, Yang-Yang Zhang, Qinming Li, Chong Wang, Yong Yu, Bingbing Zhang, Han-Shi Hu, Weiqing Zhang, Dongxu Dai, Guorong Wu, Dong H. Zhang, Jun Li, Xueming Yang & Ling Jiang, Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube, Nature Communications volume 11, Article number: 5449 (2020)

双(三氟甲磺酰基)酰亚胺阴离子与被吸附二氧化碳之间相互作用(Communications Chemistry 2020)

Posted · Add Comment

离子液体(ILs)的二氧化碳(CO2)选择性吸收特性与CO2捕集方法的发展密切相关。尽管有报道称氟化组分使ILs增强了CO2溶解度,但深入理解ILs与CO2之间的相互作用一直是一个挑战。在本研究中,作者利用软晶质材料[Cu(NTf2)2(bpp)2] (NTf2‒ = bis(trifluoromethylsulfonyl)imide, bpp = 1,3-bis-(4-pyridyl)propane)作为单晶X射线衍射分析的替代物,将CO2与NTf2‒(氟化离子液体组分,导致二氧化碳高溶解度)之间的相互作用可视化。对负载二氧化碳的晶体结构的分析表明,CO2与NTf2‒阴离子的氟原子和氧原子以反式而非顺式结构发生相互作用。对负载CO2的晶体结构的理论分析表明,CO2与骨架之间存在色散和静电相互作用。总而言之,为理解和改进离子液体吸收二氧化碳的特性提供了重要的见解。 使用AMS-ADF优化添加H原子的结构(PBE-D3(BJ)/TZ2P),并使用能量分解方法(EDA)结合化学价态理论的自然轨道对模型(NOCV)结构进行了分析。 参考文献: Xin Zheng, Katsuo Fukuhara, Yuh Hijikata, Jenny Pirillo, Hiroyasu Sato, Kiyonori Takahashi, Shin-ichiro Noro & Takayoshi Nakamura, Understanding the interactions between the bis(trifluoromethylsulfonyl)imide anion and absorbed CO2 using X-ray diffraction analysis of a soft crystal surrogate, Communications Chemistry volume 3, Article number: 143 (2020)  

ADF新功能:Unrestricted开壳层片段的EDA-NOCV分析

Posted · Add Comment

AMS2019.205最新片段分析功能,能够精确地计算开壳层片段的键能分析问题。该版本目前还没有正式发布,用户可以下载最新开发版,尝试该功能:https://www.scm.com/support/downloads/development-snapshots/ 旧版对开壳层碎片,是采用近似的方法:计算碎片时,使用Restricted方法,得到能量与空间分布相同的α轨道和β轨道,然后通过人为调整电子占据方式,近似地得到所需的碎片的电子态。这种方法,对某些体系较容易实现,而对一些体系,则相当困难。 新版允许对开壳层片段进行精确的Unrestricted计算,直接沿用碎片的Unrestricted计算的结果,进行EDA、NOCV计算分析。原则上来说,是精确的处理方式,而旧版则是近似处理的方式。这里我们以Sr(CO)8为例,演示该功能的使用。 该体系相关文献,参考:钙锶钡配合物也遵守18电子规则(Science, 2018)。 请注意该文献使用旧版AMS计算完成,本文使用更精确的新方法重新计算,因此结果略有差别,但对比结果,差异不大。 演示教程参考:https://www.fermitech.com.cn/wiki/doku.php?id=adf:openshellftagmentanalysis_new    

ADF Highlight:修正氢键的次静电相互作用模型(JACS,2019)

Posted · Add Comment

文献资料:Stephanie C. C. van der Lubbe, Francesco Zaccaria, Xiaobo Sun, and Célia Fonseca Guerra, Secondary Electrostatic Interaction Model Revised: Prediction Comes Mainly from Measuring Charge Accumulation in Hydrogen-Bonded Monomers, J. Am. Chem. Soc., Just Accepted Manuscript, 10.1021/jacs.8b13358 次静电相互作用(SEI)模型常用于预测和解释自组装体系的相对氢键强度。该模型将氢键的作用机制简化为相互作用的点电荷,但实验结果往往与该模型的预测一致。这一模型是如何预测的?本文研究了两个四重氢键异构体DDAA-AADD和DADA-ADAD。 结果表明,当质子给体D(电子供体)和质子A(电子受体)以DDAA的方式聚在一起时,前沿原子周围的电荷积累比DADA的方式要大。这种电荷积累增强D的正电性以及A的负电性,使得DDAA的静电作用和共价作用都得到增强。因此,该模型之所以有效,是因为它为氢键单体中的电荷积累提供了度量。这为超分子化学家们调控氢键强度、控制自组装体系性能提供了理论依据。 本文使用ADF中的EDA方法分析了氢键键能的构成,静电势分布、前线分子轨道等信息。

BAND Highlight:通过对扩展系统的能量分解分析,推导分子、表面和固体的成键概念(WIREs Comput. Mol. Sci., 2018)

Posted · Add Comment

文献资料:Lisa Pecher, Ralf Tonner, Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems, WIREs Comput. Mol. Sci., 2018 化学键的概念,如共价键、离子性、泡利排斥、共享电子,或施主-受体键,是对我们丰富的化学知识进行归纳,以及预测新反应活性的重要工具。电子结构分析为理解这些概念的根源提供了基础。能量分解分析(EDA)是一种成熟的分子分析方法,最近在表面和固体中得到了应用,被称为周期性EDA(pEDA)。本文概述了该方法的基础和应用,该方法可用于推导成键的概念。在分子和固体化学中,用于研究分子与表面的吸附和反应(例如有机分子与半导体表面的相互作用)。基于电子结构分析和定量方法的支持,我们证明了类似键的概念可以应用在不同的化学环境中。 BAND中的pEDA方法已经被成熟地应用。

ADF Highlight:钙锶钡配合物也遵守18电子规则(Science, 2018)

Posted · Add Comment

文献资料:Xuan Wu,  Lili Zhao,  Jiaye Jin,  Sudip Pan, Wei Li,  Xiaoyang Jin,  Guanjun Wang,  Mingfei Zhou, Gernot Frenking, Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals, Science 361, 912–916 (2018) 碱土金属钙(Ca)、锶(Sr)和钡(Ba)主要通过nS和nP价轨道进行化学键合(其中n为主量子数)。复旦大学周鸣飞老师课题组和南京工业大学Gernot Frenking与赵莉莉老师课题组报道了八配位羰基配合物M(CO)8(其中M=Ca,Sr或Ba)在低温氖基质中的分离和光谱表征。对这些立方Oh对称配合物的电子结构分析表明,M-CO键主要来自[M(dπ)]→(CO)8 π的反馈作用,从而解释了C-O伸缩频率的强烈红移。还制备了相应的自由基阳离子气相配合物,并通过质量选择红外光解光谱对配合物进行了表征,证实其遵守过渡金属化学有关的18电子规则。   本文使用了一种非常强大的研究化学成键细节的工具:ADF中的EDA-NOCV功能(在BAND模块中,该功能对周期性体系同样适用)。   EDA功能将金属与配体之间的相互作用能,分解为泡利排斥、静电作用、轨道作用,并得到分子轨道与碎片轨道之间的关系,而NOCV功能将轨道作用更详细地分解到具体的一对对相互作用的轨道中。   NOCV分析表明,M-CO键主要来自[M(dπ)]→(CO)8 π的反馈作用:   相关中文教程: ETS-NOCV功能案例:开壳层、闭壳层、环状结构 ETS-NOCV功能案例:二聚体能量分解(EDA)中轨道作用、电子在片段轨道间转移的分解 键能分解(EDA) NOCV理论

ADF Highlight:沸石中八配位卤素(Proc. Nat. Acad. Sci.,2017)

Posted · Add Comment

参考文献: G. Goesten, R. Hoffmann, F. M. Bickelhaupt and E. J. M. Hensen, 8-Coordinate Fluoride in a Silicate Double-4-Ring, Proc. Nat. Acad. Sci.  114, online (2017). 最近发现卤素在硅酸盐,也就是普通的沸石单胞D4R结构中存在颇为耐人寻味的成键作用(Goesten, Hoffmann, Bickelhaupt, Hensen.) 根据现在的理论上来说,所有卤化物倾向于占据中心的位置,来最大限度地减小笼子的形变(应变)。在应变存在的情况下,键作用能在笼顶点的位置应该更大,实际上中心位置就会成为跨越氧化硅对角顶点运动的过渡态。 EDA分析(参考费米维基:键能分解EDA)揭示了泡利排斥与中心卤素原子大小的关系。F–、Cl–、Br–、I–在D4R中的静电吸引与轨道相互作用依次增大,但都被大的多的泡利排斥掩盖掉了,只有F–的净成键作用能相比而言还算大。其他小离子,比如Li+、OH–、H–在D4R中也有较大的净的成键作用。 文中使用ADF的片段分析功能表明:在笼子的中心位置,卤素是八配位的;键高度离域,虽然八配位,但键级为4。 上图中的密度变化,参考费米维基:如何计算片段差分密度(分子与片段的电子密度之差)

ADF-分子与团簇的DFT计算

Posted · Add Comment

概述 ADF 是世界上最早的 DFT 计算软件,计算功能非常完善、全面,建模、分析用户界面对初学者非常友好,节点内、跨节点并行计算效率非常高效。 一般功能:电子与结构、谱学与非线性光学性质、化学反应、热力学性质、溶剂化效应等,并包括高精度GW方法精确计算分子解离能与亲和势。 光学材料:零场劈裂、激发态辐射速率与寿命、系间窜跃、自旋轨道耦合,高精度GW方法精确计算ΔES-T。为OLED器件模拟软件Bumblebee提供原子层级模拟数据输入,辅助OLED器件模拟。 重元素与配合物:重元素体系研究必备工具,包含高精度相对论方法ZORA、X2C,完善的轨道成分分析、以及最流行的化学键分析方法EDA-NOCV、IQA等。 功能列表 效率优势: 支持节点内、跨节点高效并行计算,对较大体系,千核并行也能达到非常高加速比 支持大体系计算,例如大体系吸收光谱 普通工作站,甚至台式机就可以计算几百原子的规模的TDDFT性质 方法优势: 精确相对论方法计算自旋-轨道耦合,擅长过渡金属、重元素体系,磷光与系间窜跃 限制性开壳层分子计算,及其 TDDFT 计算 GW方法(支持自旋轨道耦合):(G0W0、evGW、G3W2)方法精确计算 IP 与 EA、GW-BSE 方法精确计算 S0-T1 能隙 RPA近似:sigma-functional 泛函更新换代迅速(ADF 泛函列表),及时引入最新的重要泛函,例如 r2SCAN-3c、TASKxc、TASKCC、D4(EEQ) 色散修正等 高精度 STO 基组:对于重元素的电子轨道计算,其他基组很容易出现定性错误(例如轨道组分不正确),ADF 可靠性久经考验 QTAIM 与 Conceptual DFT,Constrained DFT,FDE 方法,收缩变分 DFT(CV(n)-DFT)用于单重态-三重态激发的计算(该功能不像普通的TDDFT那样被电荷转移激发所困扰)、配体场DFT(LFDFT)对 d → d和f → d电子转移的情况,令计算结果更可靠),基于LFDFT的 ESR g-张量双峰、XMCD 计算、DIM/QM(DRF 梯度) QM/MM与多尺度方法 功能列表: 键合分析 键级与键能计算、能量分解EDA、电荷分解CDA、化学价自然轨道ETS-NOCV(能量贡献T/V分析)、原子间键能计算方法IQA、df轨道在配合物中的分裂 分子轨道MO投影到碎片轨道SFO、SFO可视化 通过Laplacian电子密度与键关键点区分化学键类型、DORI […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •