离散元方法和通过 X 射线计算机断层扫描表征的锂离子正极结构电化学建模

Posted · Add Comment

概述 锂离子电池因其高容量、高功率的优点,在储能领域发挥着至关重要的作用,广泛用于电动汽车和便携式电子产品等。电动汽车的快速发展要求高能量密度、高循环寿命和低成本,进一步改进制造工艺和电极设计仍然存在挑战。 在电极制造过程中,压延工艺是定制电极微观结构的关键步骤。在本研究中,使用离散元法(DEM)和粘结颗粒模型研究压延过程对电极微观结构的影响,对使用 X 射线计算机断层扫描(XCT)表征的真实电极结构和理想化 DEM 结构进行综合评估,计算分析基于断层扫描和 DEM 的电极结构及输运特性,即孔隙率分布、比表面积和曲折因子。在考虑碳粘合剂域(CBD)相之后,进一步分析电化学性质。 亮点 对基于高分辨率 XCT 表征和 DEM 的锂离子电池阴极结构进行评估在 Simpleware 软件中生成高质量的四面体网格,将网格模型导入 COMSOL 中进行仿真考虑不同的压延水平和 CBD 相,分析电化学性能 方法 图像处理 电极结构由 96 wt% LiNi0.6Mn0.2Co0.2O2(NMC622,BASF)、2 wt% C65 炭黑(Imerys)和 2 wt% PVDF(Solvay)配制,使用带有 MTI MSK-HRPMR100DC 压延设备的辊压机将干燥的电极压延两次。通过 XCT 对阴极结构进行表征,采用未压延结构和压延结构与 DEM 预测进行比较。使用基于机器学习的图像分析工具 Ilastik 预测扫描图像中不同相的体积分数,即 AM 颗粒相、CBD 相和宏孔相。 原始扫描图像(图a)经过过滤和二值化后获得 AM 颗粒相(图b),进行分割处理分离和标记单个 AM 颗粒(图c),并获得其各自的体积和坐标。在 DEM 模拟中,阴极结构内的颗粒近似为球形颗粒(图d)。 图1:AM 颗粒相的图像处理步骤 DEM […]

【中南大学肖劲-仲奇凡教授课题组】锂离子电池用导电炭黑微观结构建模及基于ReaxFF与DFT的电化学反应机理研究(Energy & Fuels 2023)

Posted · Add Comment

摘要 中南大学肖劲-仲奇凡课题组,通过高分辨率透射电子显微镜(HRTEM)、XRD、拉曼光谱和XPS实验检测,探讨了导电炭黑的结构特征。条纹的CB晶格长度大多<20Å,峰值约为10Å。条纹在0–360°处均匀分布,符合其“洋葱状”结构。总共堆叠了2-5层,平均堆叠数量为2.91,具有一定的顺序。弯曲条纹总长度的比例为67.13%,高于总数的比例(46.57%),表明弯曲条纹一般较长。然后通过构建CB(C11854)的洋葱状颗粒模型,结合FT-IR和XRD光谱计算验证了该模型的合理性。 作者同时在理论方面,采用基于反应力场的分子动力学(AMS软件ReaxFF模块)研究了CB和碳酸亚乙酯(EC)在锂离子电池中的电化学氧化行为。EC通过环内和环外O攻击CB,EC的分解产生CO2和C2H4。CB表面形成了各种O基团,EC和CB的破坏影响了电池的循环稳定性和寿命。在使用F2作为CB的保护后,EC的消耗减少,并且在CB表面仅形成少数O基团。这一结果为减缓CB和EC之间的电化学副反应提供了高精度的模拟支持。 扩展阅读: 中文详细解读:https://mp.weixin.qq.com/s/df7GchOCPdT_kVCdgKBNZw英文文献全文:Construction of a 3D “Onion-like” Model of Conductive Carbon Black for Lithium-Ion Batteries and Exploration of the Electrochemical Oxidation Mechanism of CB and Ethylene Carbonate via ReaxFF MD, Energy & Fuels. 2023, 37, 9, 6778–6790

通过结构设计缓解锂离子电池阳极膨胀引起的力学退化

Posted · Add Comment

概述 弯曲薄膜和涂层的体积膨胀力学在包括生物医学植入物涂层、热/环境障涂层以及电化学储能系统在内的各种技术中都发挥着至关重要的作用。每次的充电周期中,锂离子电池的硅阳极内可能会经历大量的活性物质膨胀,体积变化可以达到 300%,从而导致开裂、分层,从而严重降低性能。 缓解由持续膨胀和收缩引起力学退化的方法主要集中在复合电极配方的设计和开发、减小活性材料的尺寸和控制整体电极微观结构。在本研究中,使用有限元分析模拟硅包覆在 Spinodal、Gyroid、Inverse Opal、和 Schwartz P. 四种不同结构形态镍骨架上锂化过程中的体积膨胀,探索骨架结构对膨胀过程中力学退化的影响。 亮点 设计四种不同结构形态的复合电极使用 Simpleware 和 Abaqus 软件进行有限元分析探索骨架形态对膨胀过程中力学退化的影响 创建结构 设计四种不同的结构形态 Spinodal、Gyroid、Schwartz P. 和 Inverse Opal(IO)。其中 Spinodal 和 IO 可以通过合成路线制作,因此是研究的重点。Gyroid 和 Schwartz P. 则是理想化的数学定义表面,主要用于解释可缩放模型的形态特征如何影响膨胀过程中的力学响应。 通过方程构建 Spinodal 结构,将生成的体积分割成一组 2D 图像,导入 Simpleware ScanIP 并转换为 Spinodal 壳结构。在 ScanIP 中利用隐式方程创建 Gyroid 和 Schwartz P. 的原始形态壳结构,并为壳体每侧添加 1 μm 厚的Ni 涂层生成最小表面形态的 Ni 骨架,总厚度为 2 μm。Inverse Opal […]

机器学习力场 M3GNet(或 DFT)预测锂电池材料中锂嵌入势

Posted · Add Comment

本文实现功能简介 因为 M3GNET 是针对这类锂电池材料结构的能量而训练得到的力场,因此能够很好地、符合预期地再现这些材料中的 Li 嵌入势。下图是 M3GNET 与 DFT 或实验结果的对比: 因此 M3GNET 可以用于筛选未知材料,或快速评估给定成分的 Li 嵌入势。不过 M3GNET 无法很好地描述脱锂前后体积的变化,因为它是基于 PBE(+U) 训练的,并且一些相关材料的结构没有用该理论水平很好地描述(理想情况下,结构应使用 BAND 和SCAN泛函进行计算)。 本文提供了一个基于 PLAMS 的 Python 脚本,可以调用 M3GNET 力场或者基于DFT的 BAND 模块进行计算,对不同材料的Li嵌入势进行筛选。其中 Li 嵌入势的定义,例如对 LinO6Ti3: VLi = [E(LinO6Ti3) -E(O6Ti3)-E(Li)*n]/n 脚本还计算了晶胞体积变化:V(O6Ti3) – V(LinO6Ti3) 脚本的使用 下载压缩文件并解压,得到一个 cif 文件夹以及一个 Python 脚本名为 Li_potential.py。其中 cif 文件夹存放的是样本结构,可以存放多个。筛选时,用户可以基于这些样本结构,分别替换其中的过渡金属和氧元素,然后计算上述两种数据。 用户可以通过如下2行修改过渡元素和替换氧元素的元素列表: tm_list = [‘Ti’,’V’,’Cr’,’Co’,’Mn’,’Fe’,’Ni’] anion_list = [‘O’,’S’] […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •