ReaxFF是一种基于力场,通过分子动力学、蒙特卡洛,模拟一定条件下的化学反应,得到产物分布、基元反应、反应速率等重要信息,探索未知反应的有力研究工具。最近几年,AMS中的ReaxFF功能迅速进入国内各大高校、研究院所,在燃烧、裂解、催化、超临界、电池、电气工程、建材、摩擦、生物药物、钙钛矿、半导体、含能材料、化学气相沉积等诸多领域有了非常广泛而成功的应用。
ReaxFF是一种基于力场,通过分子动力学、蒙特卡洛,模拟一定条件下的化学反应,得到产物分布、基元反应、反应速率等重要信息,探索未知反应的有力研究工具。最近几年,AMS中的ReaxFF功能迅速进入国内各大高校、研究院所,在燃烧、裂解、催化、超临界、电池、电气工程、建材、摩擦、生物药物、钙钛矿、半导体、含能材料、化学气相沉积等诸多领域有了非常广泛而成功的应用。
Søren Smidstrup, Andreas Pedersen, Kurt Stokbro, Hannes Jónsson发表了一篇关于“改进最小能量路径的初始猜测”的方法(J. Chem. Phys. 140,214106(2014))。 文章中提出的方法是Synopsys QuantumWise、University of Island、ETH Zurich和Aalto University合作研究的结果,目的是在给定的初始和最终结构中间更好的产生过渡态路径的初始猜测。此方法基于image-dependent pair potential(IDPP)方法,可以提供一套初始的反应路径结构,可以用于进行基于密度泛函理论的Nudged Elastic Band(NEB)计算。 作者在文中指出,使用IDPP产生的初始路径可以将用DFT方法搜索最小能量路径的计算量减少最少50%,最多则可以减少一个数量级。并行计算时间则可以减少更多,因为与直角坐标线性内插方法相比,这种方法的计算量均衡更好。 IDPP方法已经在Virtual NanoLab(VNL)中实现,使用它可以帮你大大加速NEB计算。 访问以下链接可以了解如何在VNL中使用QuantumATK(ATK-DFT、ATK-SE、ATK-Classical)中使用NEB计算: 铂在铂表面的扩散:NEB计算 使用VASP进行NEB计算同样可以从IDPP方法中受益。想了解如何使用该方法,可以试用最新版VNL2014,这里提供了计算实例: 使用VNL和VASP进行NEB过渡态搜索计算。