通过生成对抗网络为异质和拓扑复杂的 3D 材料创建微观结构

Posted · Add Comment

本研究采用由 Xe 等离子聚焦离子束扫描电子显微镜(Xe PFIB-SEM)获取的大尺寸 3D 微观结构数据集,通过生成对抗网络(GAN)框架学习和生成固体氧化物燃料电池电极的 3D 微观结构。利用有限元分析进行电化学性能模拟,并与基于晶粒的生成算法(DREAM3D)进行对比。机器学习模型能够以高保真度重建微观结构,使其成为 ICME 工具集中有价值的补充。

通过基于 X 射线 Micro CT 图像的三维孔隙模型对硬化水泥浆体电阻率进行数值评估

Posted · Add Comment

概述 耐腐蚀性能对于钢筋混凝土结构的耐久性至关重要。特别地,抗氯离子侵蚀性能主要与保护混凝土的电阻率(ER)有关。计算电阻率时要考虑的电导池常数由理论获得,在大多数情况下为 2πa,但应根据测试条件进行修改。本研究基于 X 射线Micro CT图像创建三维孔隙模型,模拟多孔水泥基体中连通孔隙内离子传导引起的电流流动,并将数值模拟评估与传统 Wenner 法测量结果进行比较。 实验 圆柱形混凝土试样直径 100 mm,高 200 mm,水灰比为 0.65。使用比重为 3.16 g/cm3 的普通硅酸盐水泥,在 20°C 的室温下养护 28 天。对尺寸为 2 mm 的硬化水泥浆体小试样进行 X 射线 CT 扫描。 表1:混凝土拌合物的配合比 在测试试样前,将其浸入水箱并在真空条件下完全饱和。采用 Wenner 四极法测量电阻率,考虑到修正电导池常数取决于试样的几何形状,将电阻率的结果转换为材料特性。通过阿基米德法测量混凝土试样的孔隙率,使用压汞法测量小试样的孔隙率。 模拟 将 CT 扫描获得的图像数据导入 Simpleware 软件,基于阈值分割为硬化水泥浆体和孔隙两个区域,分界线根据压汞法和阿基米德法测得的孔隙率确定。 图1:灰度像素值直方图和 3D 孔隙结构模型 在 Simpleware FE 模块生成高质量的四面体网格模型,导出至 COMSOL 软件进行数值模拟。在 X 方向施加电位差,计算 X 方向每个平面上观察到电流密度的面积分,从而得到流过多孔介质的平均电流 I。绝缘平面的边界条件设定为诺伊曼条件,根据稳态模拟结果可根据电位 V 和电流 I 得到电阻率 R。 为确认结果各向同性的一致性,在 X、Y、Z 方向上均进行计算。值得注意的是,液相中的电导率很大程度上取决于孔隙溶液中的离子浓度和迁移率,满足电中性的要求。电流通过离子传导在硬化混凝土中流动,在模拟中假设其是完全饱和的。 […]

多孔结构的流体力学:实验、CFD 和人工神经网络分析

Posted · Add Comment

概述 众多可持续发展目标需要探索和生产新的可持续材料。作为最有前途的材料之一,多孔金属结构由于其较高的表面积、刚度和孔隙体积及固定的孔隙网络成为改善流体和传热的理想候选材料。固体含量较高的泡沫为闭孔金属泡沫,而固体含量较低的泡沫为多孔金属泡沫。材料的拓扑和孔隙结构特征往往受到生产工艺(发泡、铸造、烧结等)路线和操作条件的影响,可由几乎所有液态金属或金属粉末制成,包括铝、铜、镍、钢、铁和合金。多孔金属可广泛应用于航空航天、热力水力输送、燃料电池、吸声板、空气净化技术和环境减排等。 为设计可应用于高效传热传质的金属泡沫,了解其流体结构特性、流体流动状态和边界是非常必要的。本项目采用多学科方法,利用实验、计算流体动力学(CFD)建模和仿真以及人工神经网络(ANN)机器学习反向传播研究液态熔体渗透技术制备铝泡沫的流体动力学。 图像处理 将含 99% 铝的液态熔体加热至 800 ℃ 后分别倒入由近球形盐、软水盐和粒状盐的空心填充床组成的模具中,凝固后压实。 图1:由近球形盐(1.4-2.0 mm,a2)和粒状盐(3.0-4.0 mm,b2)制成多孔铝结构的摄影图像(左)和扫描电子显微镜(SEM)图像 使用 Zeiss Xradia Versa XRM-500 X 射线计算机断层扫描(CT)系统获得图像数据集(3000 张 TIFF 格式),导入 Simpleware 软件中进行图像处理,应用各种工具(阈值、滤波器、腐蚀和膨胀等)生成 3D 体积结构。在Simpleware ScanIP 模块中,从一个大的 3D 模型中裁剪出合适的 3D RVE(代表性体积单元)结构,使其测量的孔隙率与实验得到的名义孔隙率仅相差 ±3 %,尺寸为材料平均开孔直径的 3-5 倍。在 ScanIP 中可以直接测量铝泡沫的孔隙率、体积和表面积,平均孔径和平均开孔通过平均分水岭分割孔隙和开孔流体域 3D RVE 的中心线得到。 在 Simpleware FE 模块生成 3D RVE 流体域的四面体网格模型,最小和最大边长分别为 3 倍和 7 倍体素尺寸,获得 5 种铝泡沫试样的最佳网格密度(2.6-3.1 Mcells)。设定边界条件,求解 […]

润湿性和初始金属成分对熔融金属渗透碳质耐火材料过程的影响

Posted · Add Comment

概述 钢铁产量中近 70% 来自采用高炉(BF)工艺生产的生铁,因此钢的成本很大程度上取决于 BF 的寿命。由于耐火材料的劣化,BF 的寿命有限,特别是聚集着液态金属的高炉炉膛中使用的耐火材料。设计更具有适应性的新型耐火材料需要全面了解工作过程中发生的劣化机制,而各种机制都取决于耐火材料的孔隙结构,并受到多孔介质中传输的限制。 本项目基于 X 射线计算机断层扫描(XCT)获得 3D 孔隙结构,开发并测试了一种耐火材料中熔融金属渗透的演化模型。假设等温渗透,材料中存在的相具有不同的润湿性且碳相选择性溶解,分析不同初始熔融金属成分和各种润湿条件对渗透过程演变的影响。 试样准备 微孔碳材料由 Tokai COBEX 公司生产,主要原料是人造石墨粒、人造半石墨粉、硅粉和氧化铝粉,煤焦油沥青为粘结剂。固体颗粒与粘结剂的比例为3.64:1。将混合原料成型为 2500 × 700 × 500 mm3 的块体,在标准环形炉内还原气氛下烘烤,从制成样品中切割直径和高均为 10 mm的圆柱体作为试样,采用 XCT 进行分析。 准备三种类型的基材用于润湿性测量:石墨(G)、氧化铝(A)和碳化粘结剂(B),全部由用于生产微孔碳材料的相同原材料制备。为获得样品的各种化学成分,准备生铁废料、化学纯铁、工业纯铁、化学纯锰和两个对照熔体,分别表示为:M2C、M3C 和 M4C。为验证化学成分,在每次熔炼后使用 Foundry-Master 光谱仪分析铸铁样品的化学成分。 表1:用于润湿性测量准备的粗铁成分(wt%) 数据处理 使用 Nanotom 180S 设备(GE)进行 XCT 扫描,将原始图像数据裁剪为 1.25 × 1.25 × 1.25 mm3 的立方体,导入 Simpleware ScanIP 软件进行图像处理。基于灰度值分割为 5 个不同的相:碳化粘结剂(棕色)、石墨(蓝色)、氧化铝(绿色)、开孔(红色)和闭孔(黄色),其中使用 Flood Fill 3D 算法工具识别开孔。 图1:XCT 数据处理过程:(a)实测数据(b)裁剪数据(c)分割数据 在 Simpleware FE 模块采用 […]

离子导体相对于电子导体在固体氧化物燃料电池阴极中渗透的优势

Posted · Add Comment

概述 固体氧化物燃料电池(SOFC)是一种极具吸引力的电化学装置,可以直接有效地利用燃料的化学能发电。SOFC 在相对高温(600–1000 ℃)下工作,可实现较高的燃料灵活性,并通过热电联产系统中的废热回收提高效率。为充分发挥潜力,SOFC 需要进一步改进,在经济上与传统能源转换技术竞争,包括提高其耐用性和可靠性。 渗透是在预制电极骨架内生成具有特定性质(如特定电导率或电催化作用)纳米级固体的过程。渗透改变了电极的局部形态,对电化学反应位点的数量和/或质量和电荷传输具有积极的影响。在实验上,很难直接确定局部电化学如何受到影响和在相关长度尺度(几十微米量级)上以适当的分辨率(纳米量级)量化电化学活性位点的 3D 分布。 为了解纳米级渗透如何影响性能,需要能够模拟许多相对较大体积 3D 微观结构的计算工具。本项目通过研发的高通量开源仿真代码 ERMINE 对 55 种不同的阴极微观结构进行有限元模拟,探索 SOFC 中离子导体和电子导体作为渗透物的差异。 图1:从分割图像数据到模拟的计算工作流程 亮点 对渗透 SOFC 阴极进行电化学 HPC 模拟。 离子导体的渗透比电子导体更能提升性能。 离子导体将在 TPB 处产生的电流重新分布到整个电极上。 再分布降低了 TPB 处的局部欧姆过电势,增加了局部活性。 原始微观结构更能显著影响整体性能。 图像处理 采用商业阴极结构的图像数据进行 3D 重建,原始数据尺寸为 126 × 73 × 12.5 μm3,体素为 55 × 55 × 50 nm3,基于灰度值将其分割为氧化钇稳定的氧化锆(YSZ)、镧锶锰氧化物(LSM)和孔隙。从完整模型中随机提取五个尺寸为 10 × 10 × 7 μm3 的较小微观结构子体积,记为 BB_i (i = 1-5)。为更精准地分割出三相界面(TPB),通过重采样调整分辨率,将原有的 1 个体素由 8 个相同的更小体素组成。 对五个微观结构进行人为地渗透,随机选择与 LSM 和 YSZ 表面接触的一定比例孔隙种子。将渗透相(LSM […]

脆性岩石试样断裂过程区及宏观疲劳裂纹行为研究

Posted · Add Comment

概述 当材料在任意荷载作用下出现应力引起的新裂纹时,材料的应力状态会发生显著变化,应力的重分布将导致脆性岩石材料中原有裂纹发生扩展、钝化或改向,对材料的强度产生影响。由于循环加载和疲劳效应,在较小荷载作用下脆性材料就可能发生破坏,这种破坏属于材料的“疲劳”破坏。地铁隧道边墙、大坝、巷道顶板、桥梁和路基等在循环/重复荷载作用下均可能发生劣化。 损伤力学研究一般关注水平和竖直变形/应变,而这些变形是微/纳裂纹形成和扩展的结果。本研究结合试验与扫描电子显微镜(SEM)、计算机层析成像(CT)技术对断裂过程区(FPZ)进行观察和分析,探索断裂韧度(KIC)与循环载荷的关系。 试验和模拟 按照 ISRM 标准开展巴西圆盘试验和断裂韧度试验,在静力和重复加载测试下均重复 5 次。用于巴西圆盘试验的岩石试样为凝灰岩。岩石试样的单轴抗压强度(UCS)为 123 MPa,巴西圆盘试样直径为 51 mm。V 型切槽巴西圆盘(CCNBD)试样中存在切槽裂纹,适用于各种断裂型加载。 图1:CCNBD 试样及其几何参数 开展采用径向间接拉伸应力的重复加载试验,正弦加载试验中荷载频率为 1 Hz。正弦循环加载试验从约 2/3 材料抗拉强度的高应力水平开始,然后将施加荷载降低约 10% 直到试样在较低应力水平下不再断裂,此时的应力水平称为试样的疲劳极限。 数值模拟中的非均质性采用扩展有限元法(XFEM)和 Simpleware 软件实现。将 CT 图像数据导入 Simpleware 软件进行图像处理,量化测试样本中 FPZ 的微断裂体积/面积,生成高质量的网格模型用于 ABAQUS 软件中的数值模拟。 结果与讨论 在线弹性断裂力学(LEFM)理论中,裂纹尖端应力情况可由3 种常见的断裂状态表征,对应为 I 型(拉伸应力)、II 型(剪切应力)和III 型(撕裂应力)裂纹扩展模式。材料的断裂模式属于上述哪种取决于裂纹几何形态及表面位移。I 型断裂条件下,由裂纹尖端开始,裂纹表面预计产生一个开口;II 型断裂条件下,裂纹面产生面内滑移;III 型断裂条件下,由于裂纹面外剪切作用,裂纹面垂直于裂纹轴线移动。 拉伸强度和断裂韧度 取 5 个试样测试结果的平均值,得到静态巴西拉伸强度为 11 MPa,静态 I 型(拉伸)断裂韧度为 1.48 MPa·m1/2。巴西圆盘试样和 CCNBD […]

利用微观结构模型评估受电弓滑板的材料性能

Posted · Add Comment

概述 铁路所使用的摩擦材料如受电弓滑板和车轮踏面制动器,大多都由复合材料制成。而复合材料的宏观性能在很大程度上取决于其几何微观结构,如尺寸、形状和成分的分布。传统的铁路材料倾向于通过试错进行试验开发。为更有效地改进和开发材料,可通过数值仿真研究材料微观结构与宏观性能间的关系。 本项目利用 X 射线计算机断层扫描技术开发了一种基于图像的浸金属碳微观模型,通过均质化方法评估其杨氏模量、热导率和电阻率,计算分析应力、温度和电流密度的分布。 图像处理 本研究所用受电弓滑板的材料为浸金属碳(PC78A),由多孔碳与铜浸渍制成,认为几乎是各向同性。 表1:PC78A 的材料性能和各成分的体积分数 使用 Bruker SkyScan 2211 CT 扫描设备获取 PC78A 的微观结构,导入Simpleware 软件进行图像处理。为缩短图像处理时间,先将像素间距从 1 μm 调整为 3 μm,采用中值滤波器去除脉冲噪声。 图1:CT 扫描获得的图像数据 裁剪边长为 600 μm 的立方体(模型 600)作为感兴趣区域,基于灰度值将图像分割为铜、碳和空隙。考虑到后续产生网格单元的数量和计算资源,将空隙区域体素小于 10 和铜中体素小于 50 的部分重新划分为碳的区域。按照不同位置将模型 600 分为 8 个边长为 300 μm 的立方体(模型 300①-⑧)。在 Simpleware FE 模块为所有模型 300 生成高质量的网格模型。 图2:模型 600 中不同模型 300 的位置关系 图3:图像分割结果和生成的网格模型 将模型 600 与模型 […]

基于 Nano-CT 和有限元方法的沥青混合料剪应力计算分析

Posted · Add Comment

概述 沥青混合料是由集料、沥青胶浆及空隙三种成分组成的非均质混合物,在荷载作用下,混合料内部的应力分布呈现非均匀性。采用连续介质力学方法研究具有非连续性特征的道路材料,难以真实地模拟其受力、变形及破坏过程。沥青路面在水平荷载与竖向荷载的综合作用下产生较大的剪应力,当混合料抗剪强度不足时,极易产生车辙、推移、拥包等剪切破坏。 本项目采用 Nano-CT 扫描设备获得制备芯样的图像数据,导入 Simpleware 软件创建与混合料内部实际空间分布一致的三维数值模型。利用有限元方法计算剪应力并分析温度的影响,通过宏观抗剪强度测定验证计算结果的合理性。 试样制备 所用 AC-13 沥青混合料级配如下表所示,胶结料采用 SK-90# 沥青,集料及矿粉均为石灰岩,沥青混合料的最佳油石比为 4.82%。首先成型为标准马歇尔试件,通过钻芯获得 20 × 20 mm的圆柱体芯样。 表1:沥青混合料级配 图像处理和模拟 采用 Xradia 410 Versa Nano-CT 设备对沥青混合料芯样进行层析扫描,将图像数据导入 Simpleware 软件进行图像处理。采用 Resample、Crop 工具调整图像分辨率和尺寸,基于灰度值使用 Otsu 自动分割工具获得集料、胶浆及空隙三个不同的相。 图1:Otsu 分割算法结果,紫色、绿色及白色区域分别代表集料、胶浆及空隙 直接对圆柱体芯样进行网格划分所得模型的单元数量将会过于庞大,需要消耗大量计算资源。同时为了保证计算结果的准确性,在芯样 10 个不同位置分别裁剪 2 × 2 × 2 mm 的立方体。在 Simpleware FE 模块选择 FE Grid 网格划分算法和生成六面体/四面体混合单元。 图2:在 Simpleware 中生成的网格模型 将由 Simpleware […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •