离子导体相对于电子导体在固体氧化物燃料电池阴极中渗透的优势

Posted · Add Comment

概述 固体氧化物燃料电池(SOFC)是一种极具吸引力的电化学装置,可以直接有效地利用燃料的化学能发电。SOFC 在相对高温(600–1000 ℃)下工作,可实现较高的燃料灵活性,并通过热电联产系统中的废热回收提高效率。为充分发挥潜力,SOFC 需要进一步改进,在经济上与传统能源转换技术竞争,包括提高其耐用性和可靠性。 渗透是在预制电极骨架内生成具有特定性质(如特定电导率或电催化作用)纳米级固体的过程。渗透改变了电极的局部形态,对电化学反应位点的数量和/或质量和电荷传输具有积极的影响。在实验上,很难直接确定局部电化学如何受到影响和在相关长度尺度(几十微米量级)上以适当的分辨率(纳米量级)量化电化学活性位点的 3D 分布。 为了解纳米级渗透如何影响性能,需要能够模拟许多相对较大体积 3D 微观结构的计算工具。本项目通过研发的高通量开源仿真代码 ERMINE 对 55 种不同的阴极微观结构进行有限元模拟,探索 SOFC 中离子导体和电子导体作为渗透物的差异。 图1:从分割图像数据到模拟的计算工作流程 亮点 对渗透 SOFC 阴极进行电化学 HPC 模拟。 离子导体的渗透比电子导体更能提升性能。 离子导体将在 TPB 处产生的电流重新分布到整个电极上。 再分布降低了 TPB 处的局部欧姆过电势,增加了局部活性。 原始微观结构更能显著影响整体性能。 图像处理 采用商业阴极结构的图像数据进行 3D 重建,原始数据尺寸为 126 × 73 × 12.5 μm3,体素为 55 × 55 × 50 nm3,基于灰度值将其分割为氧化钇稳定的氧化锆(YSZ)、镧锶锰氧化物(LSM)和孔隙。从完整模型中随机提取五个尺寸为 10 × 10 × 7 μm3 的较小微观结构子体积,记为 BB_i (i = 1-5)。为更精准地分割出三相界面(TPB),通过重采样调整分辨率,将原有的 1 个体素由 8 个相同的更小体素组成。 对五个微观结构进行人为地渗透,随机选择与 LSM 和 YSZ 表面接触的一定比例孔隙种子。将渗透相(LSM […]