概述 骨小梁是一种海绵状的各向异性材料,将载荷从关节表面转移到更为致密的皮质骨。皮质骨的密度和刚度更为一致,处理重复的拉伸和压缩负载产生的压力。在模型中准确地定义这些材料的特性对于将医疗器械设计和手术原理转化为临床应用至关重要。骨科医疗器械通过提供骨骼愈合或关节功能的环境帮助患者康复,外科医生需要根据患者的骨质量、合并症及自身经验,为最佳植入物做出最准确的预测。 精准的计算模型可以使外科医生和医疗器械工程师能够模拟患者骨骼内每种植入物类型的性能,以便就植入物的设计、选择和手术技术做出更为明智的决策。本研究开发了一个利用骨矿物质密度通过定量计算机断层扫描(QCT)确定有限元分析(FEA)中材料属性的插件程序,与图像处理软件 Simpleware 结合简化了该方法的工作流程,可更方便于临床和研究的应用。 亮点 使用 Simpleware ScanIP 的图像处理和 Python 脚本编辑工具对 CT 扫描数据进行预处理。将单个 CT 体素的灰度值转换为杨氏模量开发的插件程序(PIP)以开源的方式共享 灰度值转换为杨氏模量的流程 输入骨小梁/皮质骨的截断密度及相应的灰度和 QCT 密度值将医学数字成像和通信(DICOM)格式的 QCT 值转换为湿表观密度湿表观密度值根据相应的组织转换为杨氏模量使用调整后的 DICOM 文件创建 3D 模型 方法 将扫描的体模 DICOM 图像数据导入 Simpleware 软件中,经过图像处理后分割为包含每个样本的圆柱体/圆盘。使用 Simpleware ScanIP 的灰度测量功能获取每个样本的平均灰度值,以 HU 为单位测量并将结果转换为 DICOM 存储的灰度值。通过对整个体模体积的 HU 进行采样(需要定义为组织等效电子密度样本),可以减少噪声的影响,并且结果可以更准确地表示整个体模的测量放射密度。 图1:研究体模中包含伪影的 DICOM 图像 使用 ScanIP 的 Profile Line 测量工具对每个灰度值进行采样,通过在样本中画线即可导出其灰度值。启动插件程序(PIP)后,提示输入灰度值和体模对应制造商定义的 QCT 密度,跟每个用户的 CT 扫描仪和体模相关。 PIP […]