用户工具

站点工具


atk:完美石墨烯和二硫化钼片层的透射谱

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
atk:完美石墨烯和二硫化钼片层的透射谱 [2017/10/28 20:26] xie.congweiatk:完美石墨烯和二硫化钼片层的透射谱 [2019/07/05 15:51] (当前版本) – [构建单胞用于计算透射谱] dong.dong
行 1: 行 1:
-======  ====== 
- 
  
 ====== 完美石墨烯和二硫化钼片层的透射谱 ====== ====== 完美石墨烯和二硫化钼片层的透射谱 ======
行 7: 行 5:
 ===== 简介 ===== ===== 简介 =====
  
-ATK中,利用一种简单方法来计算一个完美周期性体系的透射谱是可能的。这种方法并不需要像处理非完美体系时设置很具体的器件构型,如电极,电极扩展区和散射区等。在这个例子中,你将看到怎样计算一个完美的周期性二维片层的透射谱。第一个计算实例是我们熟知的石墨烯;第二个实例是单层<chem>MoS2</chem>,相比石墨烯来说它有一个相对复杂的晶胞结构+QuantumATK中,可以利用一种简单方法来计算一个完美周期性体系的透射谱。这种方法并不需要像处理非完美体系时设置很具体的器件构型,如电极,电极延伸区和散射区等。在这个例子中,你将看到怎样计算一个完美的周期性二维片层的透射谱。第一个计算实例是我们熟知的石墨烯;第二个实例是单层<chem>MoS2</chem>,相比石墨烯来说晶胞结构相对复杂。
  
 对于一个完美的周期结构,其透射谱原则上是其电子能带结构每个能级上所有模式的累加求和。在一维体系中,你可以手动求和;但对于二维体系,我们必须在求解其电子结构和透射谱时考虑如何对布里渊区进行合理的分割。 对于一个完美的周期结构,其透射谱原则上是其电子能带结构每个能级上所有模式的累加求和。在一维体系中,你可以手动求和;但对于二维体系,我们必须在求解其电子结构和透射谱时考虑如何对布里渊区进行合理的分割。
行 14: 行 12:
 ===== 构建单胞用于计算透射谱 ===== ===== 构建单胞用于计算透射谱 =====
  
-需要说明的是:在ATK中,计算透射谱和计算能带结构的方法是一样的。因此,在使用时都将遵循相同的规则:晶胞必须是类电极结构的,即晶胞的A和B矢量必须同时垂直于C(C平行于Z方向);计算透射谱的是C方向(这里需要指出,并不是所有材料均是各向同性的)。+需要说明的是:在QuantumATK中,计算透射谱和计算能带结构的方法是一样的。因此,在使用时都将遵循相同的规则:晶胞必须是类电极结构的,即晶胞的A和B矢量必须同时垂直于C(C平行于Z方向);计算透射谱的是C方向(这里需要指出,并不是所有材料均是各向同性的)。
  
-请记住,在C方向上你不需要重复晶胞;你可以利用尽可能小的晶胞。ATK会内部的扩建足够大的超胞以考虑所有相关的相互作用。+请记住,在C方向上你不需要重复晶胞;你可以利用尽可能小的晶胞。QuantumATK会内部的扩建足够大的超胞以考虑所有相关的相互作用。
  
 +<WRAP center info 100%>
 +=== 提示 ===
 +**本教程使用特定版本的QuantumATK创建,因此涉及的截图和脚本参数可能与您实际使用的版本略有区别,请在学习时务必注意。**
 +在新的版本中,我们推荐你使用DFT-LCAO方法进行计算,尽量使用默认参数,其他设置参照下文。
 +</WRAP>
  
 ===== 石墨烯 ===== ===== 石墨烯 =====
行 30: 行 33:
   - 传送结构到**Script Generator**。   - 传送结构到**Script Generator**。
  
-===== 计算 =====+==== 计算 ====
  
-在这个例子中,你将使用紧束缚模型去进行快速计算,更具体,一个考虑3级近邻的单Pi能带模型。对“简单”的石墨烯来说,这将会提供给你一个极好的能带结构用来计算透射谱。+在这个例子中,你将使用紧束缚模型去进行快速计算,更具体的说一个考虑级近邻的单$\pi$能带模型。对“简单”的石墨烯来说,这将会提供给你一个极好的能带结构用来计算透射谱。
  
 但是,处理石墨烯时往往会有一些问题,因为你很难知道需要选择多少k点去进行布里渊区采样从而得到收敛的结果;此外,为了获得特定高对称K点附近能带的准确值你必须考虑这个点或者周围的一些点。通用的规则是你需要3的奇数倍数值(某些情况下还需要考虑构建超胞)。基于简单的最近邻紧束缚模型(能带结构计算已经基本编码到该方法中),在B和C方向上你实际上不需要超过3个k点去进行布里渊区采样。(利用DFT方法,你可能至少需要9个点。) 但是,处理石墨烯时往往会有一些问题,因为你很难知道需要选择多少k点去进行布里渊区采样从而得到收敛的结果;此外,为了获得特定高对称K点附近能带的准确值你必须考虑这个点或者周围的一些点。通用的规则是你需要3的奇数倍数值(某些情况下还需要考虑构建超胞)。基于简单的最近邻紧束缚模型(能带结构计算已经基本编码到该方法中),在B和C方向上你实际上不需要超过3个k点去进行布里渊区采样。(利用DFT方法,你可能至少需要9个点。)
行 48: 行 51:
 为了验证你是否获得一个好的能带结构,打开**Analysis>Bandstructure**模块;双击,设置高对称性点间数目为90(这意味着你会考虑高对称K点,K点在G-Z路径上)。同时,增加X,G到布里渊区路径,这就意味着整个二维区域的根本区域都会被覆盖。 为了验证你是否获得一个好的能带结构,打开**Analysis>Bandstructure**模块;双击,设置高对称性点间数目为90(这意味着你会考虑高对称K点,K点在G-Z路径上)。同时,增加X,G到布里渊区路径,这就意味着整个二维区域的根本区域都会被覆盖。
  
-{{ :atk:bandstructure5.png?600 |band structure}}+{{ :atk:bandstructure5.png?400 |band structure}}
  
  
行 55: 行 58:
 打开4个**Analysis>TransmissionSpectrum**模块,双击每一个模块并在B方向上分别设置不同的k点采样值(注意没有必要对A进行设置,没有C方向的选项设置):3,27,99,601。 打开4个**Analysis>TransmissionSpectrum**模块,双击每一个模块并在B方向上分别设置不同的k点采样值(注意没有必要对A进行设置,没有C方向的选项设置):3,27,99,601。
  
-{{ :atk:transmission_spectrum1.png?600 |transmission spectrum}}+{{ :atk:transmission_spectrum1.png?400 |transmission spectrum}}
  
 最终: 最终:
行 68: 行 71:
 {{ :atk:graphene_transmission.png?600 |graphene transmission}} {{ :atk:graphene_transmission.png?600 |graphene transmission}}
  
-观察能带结构,正如与所选择参数期望一般,你可以看到在费米能级附近有一个完美的能带。高对称K点是非常清晰的,它出现在Γ点和Z点之间(虽然没有字母标示)。在这里我们指出:由于我们有一个超胞,所以布里渊区是折叠的。+观察能带结构,正如与所选择参数期望一般,你可以看到在费米能级附近有一个完美的能带。高对称K点是非常清晰的,它出现在Γ点和Z点之间(虽然没有字母标示)。在这里我们指出:由于我们使用的是超胞,所以布里渊区是折叠的。
  
-{{ :atk:graphene_bandstructure.png?600 |graphene bandstructure}}+{{ :atk:graphene_bandstructure.png?400 |graphene bandstructure}}
  
 现在,我们留下一个作业去供你自己练习,使用相同的设置去计算六方的石墨烯单胞的能带结构。结果如下图所示。不要忘记,如果你仅从数据库选择石墨烯而不作任何处理,晶胞轴是定向的,因而你需要对A/B平面应用k点采样。 现在,我们留下一个作业去供你自己练习,使用相同的设置去计算六方的石墨烯单胞的能带结构。结果如下图所示。不要忘记,如果你仅从数据库选择石墨烯而不作任何处理,晶胞轴是定向的,因而你需要对A/B平面应用k点采样。
  
-{{ :atk:graphene_bandstructure_hex.png?600 |graphene bandstructure in hexgonal cell}}+{{ :atk:graphene_bandstructure_hex.png?400 |graphene bandstructure in hexgonal cell}} 
 + 
 +===== MoS2 ===== 
 + 
 +第二个计算实例是<chem>MoS2</chem>。它和石墨烯有些相似之处,但也有很多不同之处。与石墨烯类似,<chem>MoS2</chem>同样有一个六方单胞,但单胞结构更复杂些:包含一个Mo原子和2个S原子。现在已发现,<chem>MoS2</chem>也可以形成单原子层,但是与石墨烯不同,单层<chem>MoS2</chem>片层具有有限的禁带宽度。 
 + 
 +关于<chem>MoS2</chem>的很多计算细节将会留下给你作为练习。尽管你需要特别注意一些参数的设置区别,但是计算步骤会非常相似。 
 + 
 +==== 几何结构 ==== 
 + 
 +  - 在数据库找到**molybdenite**,将其加载到stash。 
 +  - 移走一层,仅在单胞内留下3个原子。 
 +  - 然后进行六方结构到正交结构的转化,如计算石墨烯时一样。 
 +  - 增加一步设置,打开**Coordinate Tools>Center**,将所有原子在各个方向居中。 
 + 
 +最终的几何结构图如下图所示。 
 + 
 +{{ :atk:mos2.png?600 |MoS2}} 
 + 
 +==== 计算 ====
  
 +AKT中的 Slater-Koster模型(DFTB)已经引入Mo-S相互作用(具体包含在CP2K设置中),我们可以用该模型计算<chem>MoS2</chem>的电子能带结构。这是一个非自洽的模型,但我们会发现由它计算得到的<chem>MoS2</chem>能带结构和通过DFT计算得到的基本一致,至少对于导带和带边沿区域来说是一致的。
  
 +  - 传递结构到**Script Generator**。
 +  - 打开一个**New Calculator**。
 +  - 选择**ATK-SE:Slater-Koster** calculator,和石墨烯一样设置布里渊区k点采样为1x3x3。(测试显示1x3x3采样所得的能带结构和1x27x27几乎没有区别)。
 +  - 在“Slater-Koster basis set”之下,你将发现在列表中只有一个选项,即CP2K模式。
 +  - 与石墨烯计算一样,打开**Bandstructure**模块,输入高对称点间的点数目(90)和路径(G-Z-Y-G)。
 +  - 基于对石墨烯的计算,你这一次可以很容易地猜到你需要选择k点采样数值为601来得到合适的结果。因此,直接打开**TransmissionSpectrum**模块并在B方向设置k点采样数值为601。
 +  - 让我们改变一个设置,我们设置透射谱计算的能量范围在-3到+3eV之间,以此去捕获透射谱上有意思的特征。
 +  - 设置输出文件的名字并保存脚本。
  
 +这一次,计算透射谱会需要稍微长的时间。若串行运算,大约需要1到2个小时。而并行运算(8节点并行),你可以将计算时间缩小到10分钟左右。
  
 +从计算结果可知(能带结构和透射谱),<chem>MoS2</chem>单层材料的确是具有一定带隙的半导体材料。
  
 +{{ :atk:mos2_transmission.png?400 |MoS2 transmisson sepectrum}}
  
 +下图所示的是利用同样的CP2K-DFTB方法计算获得的六方<chem>MoS2</chem>单层结构的能带结构(目的是避免由于构建正交超胞结构所产生的能带折叠效应)。我们可以清晰的发现,<chem>MoS2</chem>单层是直接带隙结构,带隙值约为2.2 eV(在K点)。这一发现与透射谱一致。
  
 +{{ :atk:mos2_monolayer_hex_cp2k.png?400 |MoS2 band structure CP2K}}
  
 +将QuantumATK的计算结果与DFT的计算结果进行对比是有意思的。你会发现,QuantumATK能通过一种更简单的方式进行与DFT一致的计算。你仅需要连接**Script Generator**并设置相同的k点采样数值。布里渊区1x27x27采样,<chem>MoS2</chem>单层结构通过LDA计算得到的能带结构如下图所示。通过比较,你会发现两者的能带结构在整体上是相似的,导带低在K点,价带顶在Γ。正如LDA方法的常见问题一下,<chem>MoS2</chem>单层结构LDA带隙稍低。
  
 +{{ :atk:mos2_monolayer_hex_dft.png?400 |MoS2 band structure DFT}}
  
 ===== 参考 ===== ===== 参考 =====
  
   - 英文教程:[[http://docs.quantumwise.com/tutorials/transmission_gr_mos2/transmission_gr_mos2.html|链接]]   - 英文教程:[[http://docs.quantumwise.com/tutorials/transmission_gr_mos2/transmission_gr_mos2.html|链接]]
atk/完美石墨烯和二硫化钼片层的透射谱.1509193612.txt.gz · 最后更改: 2017/10/28 20:26 由 xie.congwei

© 2014-2022 费米科技(京ICP备14023855号