用户工具

站点工具

本页面的其他翻译:
  • zh
Action disabled: source

atk:2019_年使用_quantumatk_发表的文章

2019 年使用 QuantumATK 发表的文章

  • 1. Yang, G. et al. Chemical Vapor Deposition Growth of Vertical {MoS}2 Nanosheets on p-{GaN} Nanorods for Photodetector Application. ACS Appl. Mater. Interfaces 11, 8453–8460 (2019).
  • 2. Kang, J., Wei, Z. & Li, J. Graphyne and Its Family: Recent Theoretical Advances. ACS Appl. Mater. Interfaces 11, 2692–2706 (2019).
  • 3. Kumawat, R. L., Garg, P., Kumar, S. & Pathak, B. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing. ACS Appl. Mater. Interfaces 11, 219–225 (2019).
  • 4. Zhang, J. & Fahrenthold, E. P. Graphene-Based Sensing of Gas-Phase Explosives. ACS Appl. Nano Mater. 2, 1445–1456 (2019).
  • 5. Zhang, Q. et al. 2D/2D Electrical Contacts in the Monolayer WSe 2 Transistors: A First-Principles Study. ACS Appl. Nano Mater. acsanm.9b00290 (2019). doi:10.1021/acsanm.9b00290
  • 6. Houssa, M. et al. Contact Resistance at MoS 2 -Based 2D Metal/Semiconductor Lateral Heterojunctions . ACS Appl. Nano Mater. 2, 760–766 (2019).
  • 7. Nanshu, L. I. U., Si, Z. & Jijun, Z. Electrical Conductance of Graphene with Point Defects. Acta Phys. -Chim. Sin. 35, 1–8 (2019).
  • 8. Yang, J. et al. Sub 10 nm Bilayer Bi2O2Se Transistors. Adv. Electron. Mater. 5, 1800720 (2019).
  • 9. Wu, X. et al. Thinnest Nonvolatile Memory Based on Monolayer h‐BN. Adv. Mater. 31, 1806790 (2019).
  • 10. Jhon, Y. I., Lee, J., Seo, M., Lee, J. H. & Jhon, Y. M. van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber. Adv. Opt. Mater. 1801745 (2019). doi:10.1002/adom.201801745
  • 11. Yang, Q. et al. Design of Single-Molecule Multiferroics for Efficient Ultrahigh-Density Nonvolatile Memories. Adv. Sci. 6, 1801572 (2019).
  • 12. Narasimman, R., Waldiya, M., Karthik, E., Mukhopadhyay, I. & Ray, A. Transition Metal Dichalcogenide Anchored in 3D Nickel Framework with Graphene Support for Efficient Electrocatalytic Hydrogen Evolution. Adv. Sustain. Syst. 1800168 (2019). doi:10.1002/adsu.201800168
  • 13. Xiao, Z. et al. Design of Atomically Precise Nanoscale Negative Differential Resistance Devices. Adv. Theory Simulations 2, 1800172 (2019).
  • 14. Tang, H. et al. Schottky Contact in Monolayer WS 2 Field-Effect Transistors. Adv. Theory Simulations 1900001 (2019). doi:10.1002/adts.201900001
  • 15. Liu, S. et al. Unusual Fermi-Level Pinning and Ohmic Contact at Monolayer Bi2 O2 Se-Metal Interface. Adv. Theory Simulations 1800178 (2019). doi:10.1002/adts.201800178
  • 16. Tien, N. T., Ut, N. Van, Hoc, B. T., Ngoc Thao, T. T. & Khanh, N. D. Electronic Transport in the V-Shaped Edge Distorted Zigzag Graphene Nanoribbons with Substitutional Doping. Adv. Condens. Matter Phys. 2019, 1–8 (2019).
  • 17. Iwasaki, T., Wang, Z., Muruganathan, M. & Mizuta, H. Formation of quantum dot in graphene single nanoconstriction. Appl. Phys. Express 12, 025004 (2019).
  • 18. Wu, J., Ma, X., Chen, J. & Jiang, X. Defects coupling impacts on mono-layer {WSe}2 tunneling field-effect transistors. Appl. Phys. Express 12, 34001 (2019).
  • 19. Deng, S., Zhang, Y. & Li, L. Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface. Appl. Surf. Sci. 476, 308–316 (2019).
  • 20. Li, H. & Lu, J. Sub-10 nm vertical tunneling transistors based on layered black phosphorene homojunction. Appl. Surf. Sci. 465, 895–901 (2019).
  • 21. Li, K., Xian, X., Wang, J. & Yu, N. First-principle study on honeycomb fluorated-InTe monolayer with large Rashba spin splitting and direct bandgap. Appl. Surf. Sci. 471, 18–22 (2019).
  • 22. Vedaei, S. S. & Nadimi, E. Gas sensing properties of CNT-BNNT-CNT nanostructures: A first principles study. Appl. Surf. Sci. 470, 933–942 (2019).
  • 23. Yoon, S. H. et al. Computational characterization of nitrogen-doped carbon nanotube functionalized by Fe adatom and Fe substituent for oxygen reduction reaction. Appl. Surf. Sci. 485, 342–352 (2019).
  • 24. Pourasl, A. H., Ariffin, S. H. S., Ahmadi, M. T., Ismail, R. & Gharaei, N. A carrier velocity model for electrical detection of gas molecules. Beilstein J. Nanotechnol. 10, 644–653 (2019).
  • 25. Asthana, S. et al. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity. Biochim. Biophys. Acta - Gen. Subj. 1863, 153–166 (2019).
  • 26. Hu, W. et al. An ab initio study on the transport characteristics of Si2C2 clusters. Can. J. Phys. cjp-2018-0521 (2019). doi:10.1139/cjp-2018-0521
  • 27. Ren, Y. et al. Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon N. Y. 143, 14–20 (2019).
  • 28. Deng, S., Cai, X., Zhang, Y. & Li, L. Enhanced thermoelectric performance of twisted bilayer graphene nanoribbons junction. Carbon N. Y. 145, 622–628 (2019).
  • 29. Rani, S. & Ray, S. J. Detection of gas molecule using C3N island single electron transistor. Carbon N. Y. 144, 235–240 (2019).
  • 30. Xia, C. et al. Rectification effects of C3N nanoribbons-based Schottky junctions. Carbon N. Y. 141, 363–369 (2019).
  • 31. Zhai, B., Yang, L., Zhou, F., Shi, J. & Huang, Y. Strong Photo-Oxidative Capability of {ZnWO}4 Nanoplates with Highly Exposed $\lbrace$0 1 1$\rbrace$ Facets. Catalysts 9, 178 (2019).
  • 32. Xia, Y. et al. Theoretical study of electron transport properties of SimCn /Cn clusters tethered on graphene nanoribbon. Ceram. Int. 45, 530–538 (2019).
  • 33. Dai, X., Zhang, L., Jiang, Y. & Li, H. Electronic transport properties of phosphorene/graphene(silicene/germanene) bilayer heterostructures: A first-principles exploration. Ceram. Int. 45, 11584–11590 (2019).
  • 34. Liu, C. et al. Effective protect of oxygen vacancies in carbon layer coated black TiO2−x/CNNS hetero-junction photocatalyst. Chem. Eng. J. 359, 58–68 (2019).
  • 35. Wang, Y. et al. Ab initio study of ({FeCpVCp}) @{MoS}2 {NT} {\textemdash} A one-dimensional bimetallic sandwich molecular wire ({FeCpVCp}) encapsulated into {MoS}2 nanotube. Chem. Phys. 523, 1–6 (2019).
  • 36. Sun, X.-W. & Zhao, P. Large dual spin-rectifying and high-efficiency dual spin-filtering in cyclooligomeric Mn-phthalocyanine dimer molecular junction. Chem. Phys. Lett. 724, 73–79 (2019).
  • 37. Panahi, S. F. K. S., Namiranian, A. & Jamaati, M. Graphene‐hBN Hybrid Nanogap for Boosting DNA Nucleobases Recognition Sensitivity. ChemNanoMat 5, 488–498 (2019).
  • 38. Bhowmick, R. & Sen, S. Spin-Crossover Assisted Spin-Switching and Rectification Action in Half-Metallic Graphitic Carbon Nitride(g-C4N3). ChemPhysChem 20, 436–442 (2019).
  • 39. Xue, P., Chen, A., Zhang, J. & Shao, Q. Transport properties of doped zigzag graphene nanoribbons. Chinese J. Phys. 57, 47–52 (2019).
  • 40. Lv, Y.-Z. & Zhao, P. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons. Chinese Phys. Lett. 36, 017301 (2019).
  • 41. Ye, M., Xia, C.-J., Zhang, B.-Q. & Ma, Y. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C2N-h2D Electrodes. Chinese Phys. Lett. 36, 47101 (2019).
  • 42. Berger, C., Conrad, E. H. & de Heer, W. A. Electronic transport properties of epigraphene. Comput. Theor. Chem. 716–722 (2019). doi:10.1007/978-3-662-53908-8_168
  • 43. He, Y., Cheng, N. & Zhao, J. First-principle study on the conductance of benzene-based molecules with various bonding characteristics. Comput. Theor. Chem. 1154, 1–10 (2019).
  • 44. Aghaei, S. M., Torres, I., Baboukani, A. R., Khakpour, I. & Wang, C. Impact of surface oxidation on the structural, electronic transport, and optical properties of two-dimensional titanium nitride (Ti3N2) {MXene}. Comput. Condens. Matter 20, e00382 (2019).
  • 45. Lanzillo, N. A., Briggs, B. D., Robison, R. R., Standaert, T. & Lavoie, C. Electron Transport Across Cu/Ta(O)/Ru(O)/Cu Interfaces in Advanced Vertical Interconnects. Comput. Mater. Sci. 158, 398–405 (2019).
  • 46. Edin, E., Luo, W., Ahuja, R., Kaplan, B. & Blomqvist, A. First principles study of C diffusion in {WC}/W interfaces observed in {WC}/Co tools after Ti-alloy machining. Comput. Mater. Sci. 161, 236–243 (2019).
  • 47. Zhang, L. et al. Effect of the heteroatom-separation on the electron transport behavior of heteroacene-junctions. Comput. Mater. Sci. 162, 124–132 (2019).
  • 48. Li, L., Bai, H., Li, Y. & Huang, Y. The electronic properties and magnetic states of edge-modified $\upgamma$-graphdiyne nanoribbons. Comput. Mater. Sci. 163, 82–90 (2019).
  • 49. Chen, D. et al. High Selective SO 2 Gas Sensor Based on Monolayer $\beta$ ]]>-AsSb to Detect SF 6 Decompositions. IEEE Sens. J. 19, 1215–1223 (2019).
  • 50. Jaramillo-Botero, A. & Marmolejo-Tejada, J. M. All-Armchair Graphene Nanoribbon Field Effect Uridine Diphosphate Glucose Sensor: First-Principles In-Silico Design and Characterization. IEEE Sens. J. 1 (2019). doi:10.1109/jsen.2019.2896448
  • 51. Banerjee, L., Sengupta, A. & Rahaman, H. Carrier Transport and Thermoelectric Properties of Differently Shaped Germanene (Ge) and Silicene (Si) Nanoribbon Interconnects. IEEE Trans. Electron Devices 66, 664–669 (2019).
  • 52. Chen, D. et al. Using Single-Layer HfS2 as Prospective Sensing Device Toward Typical Partial Discharge Gas in SF6-Based Gas-Insulated Switchgear. IEEE Trans. Electron Devices 66, 689–695 (2019).
  • 53. Jafari, H., Fattahi, R., Ahmadi, A., Faghihnasiri, M. & Rajipour, M. Nonlinear Electronic Transport Behavior of Υ -Graphyne Nanotubes. IEEE Trans. Electron Devices 1–7 (2019). doi:10.1109/ted.2018.2890684
  • 54. Zhang, W., Ragab, T. & Basaran, C. Electrostatic Doping-Based All {GNR} Tunnel {FET}: An Energy-Efficient Design for Power Electronics. IEEE Trans. Electron Devices 66, 1971–1978 (2019).
  • 55. Deng, S. et al. Optical and Piezoelectric Properties of Strained Orthorhombic {PdS}2. IEEE Trans. Nanotechnol. 18, 358–364 (2019).
  • 56. Dey, D., Roy, P. & De, D. First principle study of the self-switching characteristics of the guanine based single optical molecular switch using carbon nanotube electrodes. IET Nanobiotechnology 13, 237–241 (2019).
  • 57. Sasaoka, K., Awano, Y., Yabusaki, K., Takashima, K. & Noda, K. Effects of an edge vacancy on electron transport in zigzag-graphene nanoribbons with oxygen terminations. Jpn. J. Appl. Phys. 58, 025002 (2019).
  • 58. Musle, V., Kumar, A. & Choudhary, S. Temperature dependent spin transport investigations in single layer VTe2. J. Alloys Compd. 770, 345–349 (2019).
  • 59. Maier, F. C., Hocker, S., Schmauder, S. & Fyta, M. Interplay of structural, electronic, and transport features in copper alloys. J. Alloys Compd. 619–626 (2019). doi:10.1016/j.jallcom.2018.10.340
  • 60. Boykin, T. B., Sarangapani, P. & Klimeck, G. Non-orthogonal tight-binding models: Problems and possible remedies for realistic nano-scale devices. J. Appl. Phys. 125, 144302 (2019).
  • 61. Wang, L., Ding, B. & Guo, Y. Spin-Polarized Transport Behavior Induced by Asymmetric Edge Hydrogenation in Hybridized Zigzag Boron Nitride and Graphene Nanoribbons. J. Electron. Mater. 48, 321–328 (2019).
  • 62. Akbar, N. et al. Investigation of Effects of Diameter, Doping and Vacancy Defects on the Band Structure and Transport Properties of Silicon Nanowires for Potential Applications in Field-Effect Transistors. J. Electron. Mater. (2019). doi:10.1007/s11664-019-06933-0
  • 63. Li, Q., Ye, X.-M., Ren, D.-H. & Tan, X.-Y. Thermal Spin Transport Properties of F/Cl Edge-Modified Zigzag Graphene Nanoribbons. J. Electron. Mater. (2019). doi:10.1007/s11664-019-07158-x
  • 64. Hu, G.-C. et al. Enhancement of magnetoresistance and current spin polarization in single-molecule junctions by manipulating the hybrid interface states via anchoring groups. J. Magn. Magn. Mater. (2019). doi:10.1016/j.jmmm.2019.02.011
  • 65. Cao, L. et al. Perfect negative differential resistance, spin-filter and spin-rectification transport behaviors in zigzag-edged $\updelta$-graphyne nanoribbon-based magnetic devices. J. Magn. Magn. Mater. (2019). doi:10.1016/j.jmmm.2019.04.062
  • 66. Li, J., Yang, Z., Xu, L. C., Yang, Y. & Liu, X. Robust negative differential resistance and abnormal magnetoresistance effects in heteroatom-substituted zigzag γ-graphyne nanoribbon homojunctions. J. Mater. Chem. C 7, 1359–1369 (2019).
  • 67. Quhe, R., Chen, J. & Lu, J. A sub-10 nm monolayer ReS 2 transistor for low-power applications. J. Mater. Chem. C 7, 1604–1611 (2019).
  • 68. He, G. et al. Multistate magnetoresistance in zigzag-edge trigonal graphene magnetic junctions. J. Mater. Sci. 54, 5551–5560 (2019).
  • 69. Wei, M. Z. et al. Controlling Rectification Performance by Tuning Molecule-Electrode Coupling Strength in Ferrocenyl-Undecanethiolate Molecular Diodes. J. Phys. Chem. C 123, 1559–1565 (2019).
  • 70. Yang, Z. et al. Crystallized phosphorus/carbon composites with tunable P C bonds by high pressure and high temperature. J. Phys. Chem. Solids 130, 250–255 (2019).
  • 71. An, Y. et al. Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers. J. Phys. Condens. Matter 31, 065301 (2019).
  • 72. Zeng, J. & Chen, K.-Q. Quantum transport properties of hybrid zigzag C3N and C3B nanoribbons. J. Phys. D. Appl. Phys. 52, 185301 (2019).
  • 73. Kuang, W., Hu, R., Fan, Z. & Zhang, Z. Strain-induced rich magnetic phase transitions and enhancement of magnetic stability for O-terminated h-BN nanoribbons. J. Phys. Condens. Matter (2019). doi:10.1088/1361-648x/aafec5
  • 74. Xu, Y. et al. Lateral scaling and positioning effects of top-gate electrodes on single-molecule field-effect transistors. J. Phys. Condens. Matter 31, 285302 (2019).
  • 75. jiangchao, H., Wu, X., Feng, Y. & Gao, G. Y. Half-metallic fully compensated ferrimagnetism and multifunctional spin transport properties of Mn3Al. J. Phys. Condens. Matter (2019). doi:10.1088/1361-648x/ab1732
  • 76. Bueno, P. R. Nanoscale origins of super-capacitance phenomena. J. Power Sources 414, 420–434 (2019).
  • 77. Zakerian, F., Fathipour, M., Faez, R. & Darvish, G. The effect of structural defects on the electron transport of MoS2 nanoribbons based on density functional theory. J. Theor. Appl. Phys. 13, 55–62 (2019).
  • 78. Sikdar, K., Mahata, A., Roy, B. & Roy, D. Hybrid thermal stabilization of Zr doped nanocrystalline Cu. Mater. Des. 164, (2019).
  • 79. Alegaonkar, A. P., Kibey, A. S., Alegaonkar, P. S., Kshirsagar, A. & Pardeshi, S. K. Experimental and theoretical study of Tetrakis(dimethylamino)ethylene induced magnetism in otherwise nonmagnetic graphene derivatives. Mater. Chem. Phys. 222, 132–138 (2019).
  • 80. Divya, S., Kumari, A. & Begam Elavarasi, S. A DFT investigation of the dependence of C13 and F19 CSA parameters on diameter and surface decorated functional groups in F-SWCNTs. Mater. Chem. Phys. 223, 715–722 (2019).
  • 81. Calogero, G. et al. Electron Transport in Nanoporous Graphene: Probing the Talbot Effect. Nano Lett. 19, 576–581 (2019).
  • 82. Zhai, B., Yang, L. & Huang, Y. Intrinsic Defect Engineering in Eu3+ Doped ZnWO4 for Annealing Temperature Tunable Photoluminescence. Nanomaterials 9, 99 (2019).
  • 83. Zhai, B., Yang, L. & Huang, Y. Intrinsic Defect Engineering in Eu3$\mathplus$ Doped {ZnWO}4 for Annealing Temperature Tunable Photoluminescence. Nanomaterials 9, 99 (2019).
  • 84. Milowska, K. Z., Burda, M., Wolanicka, L., Bristowe, P. D. & Koziol, K. K. K. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu-CNT composites. Nanoscale 11, 145–157 (2019).
  • 85. Lai, Y. et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals {CuCrP}2S6. Nanoscale 11, 5163–5170 (2019).
  • 86. Taninaka, A., Yoshida, S., Sugita, Y., Takeuchi, O. & Shigekawa, H. Evolution of local conductance pathways in a single-molecule junction studied using the three-dimensional dynamic probe method. Nanoscale 11, 5951–5959 (2019).
  • 87. Nayak, P. K. Pulsed-grown graphene for flexible transparent conductors. Nanoscale Adv. 1, 1215–1223 (2019).
  • 88. Mahata, A., Jiang, J.-W., Mahapatra, D. R. & Rabczuk, T. Effect of intrinsic structural defects on mechanical properties of single layer {MoS}2. Nano-Structures & Nano-Objects 18, 100247 (2019).
  • 89. Wang, T., Zhang, J. & Shao, Q. Tiny nano-scale junction built on B/N doped single carbon nanotube. Nanotechnology 30, 075203 (2019).
  • 90. Wang, Y. et al. Transport properties and photoresponse of a series of 2D transition metal dichalcogenide intercalation compounds. New J. Chem. 43, 6523–6534 (2019).
  • 91. He, J. et al. Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. npj Comput. Mater. 5, (2019).
  • 92. Zou, D., Zhao, W. & Yang, C. Magnetic field-driven spintronic logic gates in one-dimensional manganese phthalocyanine nanoribbons based molecular spintronic devices. Org. Electron. 69, 120–127 (2019).
  • 93. Matsuura, Y. & Taniguchi, I. Single-molecule tunnel magnetoresistance of p-type doped polypyrrole. Org. Electron. 69, 114–119 (2019).
  • 94. Chen, T. et al. Characteristics of electronic and spin-independent linear conductance in conjugated aromatic polymer based molecular device. Org. Electron. physics, Mater. Appl. 65, 49–55 (2019).
  • 95. Wang, Z. Q. et al. Controlling the conductance of single-molecule junctions with high spin filtering efficiency by intramolecular proton transfer. Org. Electron. physics, Mater. Appl. 64, 7–14 (2019).
  • 96. Gao, R. Bin, Peng, X. F., Jiang, X. T., Tan, S. H. & Long, M. Q. Electrical-thermal transport properties and their applications in graphene nanoribbon with DNA bases. Org. Electron. physics, Mater. Appl. 67, 57–63 (2019).
  • 97. Garc\’\ia-Merino, J. A. et al. Quantum and bistable magneto-conductive signatures in multiwall carbon nanotubes decorated with bimetallic Ni and Pt nanoparticles driven by phonons. OSA Contin. 2, 1285 (2019).
  • 98. Liu, W., Meng, F. H., Zhao, J. H. & Jiang, X. H. Electronic transport through hybrid armchair graphane/graphene nanoribbons. Phys. B Condens. Matter 554, 144–147 (2019).
  • 99. All Abbas, J. M., Narin, P., Kutlu, E., Lisesivdin, S. B. & Ozbay, E. Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivations. Phys. B Condens. Matter 556, 12–16 (2019).
  • 100. Ansarino, M., Moghaddam, H. M. & Bahari, A. The dependence of TMR on the barrier thickness, bias voltage and asymmetry in Fe/ZnO/Fe MTJs: A DFT study. Phys. E Low-Dimensional Syst. Nanostructures 107, 80–90 (2019).
  • 101. Khalatbari, H., Vishkayi, S. I. & Soleimani, H. R. Effect of dopant nitrogen on the thermoelectric properties of C20 and C60 fullerene in graphene nanoribbon junction. Phys. E Low-Dimensional Syst. Nanostructures 108, 372–381 (2019).
  • 102. Fuchs, F., Gemming, S. & Schuster, J. Radially resolved electronic structure and charge carrier transport in silicon nanowires. Phys. E Low-Dimensional Syst. Nanostructures 108, 181–186 (2019).
  • 103. Shi, Y., Wang, C., Wang, T. & Wang, M. The electronic and transport properties of zigzag β-antimonene nanoribbons. Phys. E Low-Dimensional Syst. Nanostructures 105, 41–46 (2019).
  • 104. Matsuura, Y. Single-molecule tunnel magnetoresistance of azulene. Phys. E Low-Dimensional Syst. Nanostructures 105, 219–223 (2019).
  • 105. Caliskan, S. Spin resolved electronic structure and transport properties of zinc oxide nanoribbon based devices. Phys. E Low-Dimensional Syst. Nanostructures 107, 67–72 (2019).
  • 106. Li, Z. L. et al. Doping-induced negative differential conductance enhancement in single-molecule junction. Phys. E Low-Dimensional Syst. Nanostructures 106, 270–276 (2019).
  • 107. Hu, X. & Cheng, F. The effect of negative differential resistance in black phosphorene nanoribbons with different passivated atoms. Phys. E Low-dimensional Syst. Nanostructures 110, 20–23 (2019).
  • 108. Li, R. X., Li, H. D., Tian, J. W., Ni, Y. & Tian, X. L. Large rectifying ratio and prefect spin-filtering effect in a zigzag SiC nanoribbon heterojuction with boron and nitrogen impurities. Phys. E Low-Dimensional Syst. Nanostructures 107, 177–181 (2019).
  • 109. Zhang, Z., Sun, J. & Leng, J. The electronic and transport properties of edge contact borophane-MoSe2 heterojunction: A first principles study. Phys. E Low-Dimensional Syst. Nanostructures 106, 5–9 (2019).
  • 110. Caliskan, S. A first principles study on spin resolved electronic properties of X@C70 (X = N, B) endohedral fullerene based molecular devices. Phys. E Low-Dimensional Syst. Nanostructures 108, 83–89 (2019).
  • 111. Wei, S. et al. Modulating electronic and magnetic properties of zigzag {MoSe}2 nanoribbons with different edge structures. Phys. E Low-dimensional Syst. Nanostructures 109, 93–100 (2019).
  • 112. Han, J. N., He, X., Fan, Z. Q. & Zhang, Z. H. Metal doped armchair graphene nanoribbons: Electronic structure, carrier mobility and device properties. Phys. Chem. Chem. Phys. 21, 1830–1840 (2019).
  • 113. Li, J. et al. Spin-filtering and tunneling magnetoresistance effects in 6,6,12-graphyne-based molecular magnetic tunnel junctions. Phys. Chem. Chem. Phys. 21, 2734–2742 (2019).
  • 114. Montes, E., Foti, G. & Vázquez, H. Crossover in the inelastic electron tunneling spectra of conjugated molecules with direct Au-C links. Phys. Chem. Chem. Phys. 21, 1564–1571 (2019).
  • 115. Chaudhury, A., Majumder, S. & Ray, S. J. Proximity-Induced Colossal Conductivity Modulation in Phosphorene. Phys. Rev. Appl. 11, 024056 (2019).
  • 116. Rumetshofer, M., Bauernfeind, D., Arrigoni, E. & Von Der Linden, W. First-principles quantum transport simulation of CuPc on Au(111) and Ag(111). Phys. Rev. B 99, 045148 (2019).
  • 117. Maji, T. K. et al. Intricate modulation of interlayer coupling at the graphene oxide/ MoS e 2 interface: Application in time-dependent optics and device transport . Phys. Rev. B 99, (2019).
  • 118. Zhao, X. & Stadler, R. DFT-based study of electron transport through ferrocene compounds with different anchor groups in different adsorption configurations of an STM setup. Phys. Rev. B 99, 045431 (2019).
  • 119. Ju, S., Dieb, T. M., Tsuda, K. & Shiomi, J. Designing Nanostructures for Heat Transport Via Materials Informatics. Phys. Rev. X 021024, 7323–7330 (2019).
  • 120. Ni, Y. et al. A metal-semiconductor transition triggered by atomically flat zigzag edge in monolayer transition-metal dichalcogenides. Phys. Lett. A 383, 1636–1641 (2019).
  • 121. Zhang, Y. et al. Spin-resolved transport properties of {DNA} base multi-functional electronic devices. Phys. Lett. A (2019). doi:10.1016/j.physleta.2019.03.034
  • 122. Li, D. et al. Spin-dependent transport properties of debrominated tetrabromopolyaromatic with Cu or Co doping embedded between zigzag graphene nanoribbon electrodes. Phys. Lett. A (2019). doi:10.1016/j.physleta.2019.04.017
  • 123. Wang, M. et al. Spin transport properties in Fe-doped graphene/hexagonal boron-nitride nanoribbons heterostructures. Phys. Lett. A (2019). doi:10.1016/j.physleta.2019.04.022
  • 124. Shah, K. A., Shunaid Parvaiz, M. & Dar, G. N. Photocurrent in single walled carbon nanotubes. Phys. Lett. A (2019). doi:10.1016/j.physleta.2019.04.024
  • 125. Deng, X. Q. & Sheng, R. Q. Spin transport investigation of two type silicene nanoribbons heterostructure. Phys. Lett. Sect. A Gen. At. Solid State Phys. 383, 47–53 (2019).
  • 126. Liu, Y., Guo, S., Yu, J. & Zhong, H. Large magnetoresistance and perfect spin filter effect in Fe doped SnS2 half-metallic monolayers: A first principles study. Phys. Lett. Sect. A Gen. At. Solid State Phys. 383, 674–679 (2019).
  • 127. Yogi, R. & Jaiswal, N. K. Adsorption of CO gas molecules on zigzag BN/AlN nanoribbons for nano sensor applications. Phys. Lett. Sect. A Gen. At. Solid State Phys. 383, 532–538 (2019).
  • 128. Zuo, X. et al. Engineering of carbon-based superlight spin filter with negative differential resistance. Phys. Lett. Sect. A Gen. At. Solid State Phys. 383, 640–645 (2019).
  • 129. Xiao, W. H. et al. Large negative differential resistance behavior in arsenene nanoribbons induced by vacant defects. Phys. Lett. Sect. A Gen. At. Solid State Phys. (2019). doi:10.1016/j.physleta.2019.02.022
  • 130. Kayang, K. W. et al. A comparative study of the interaction of nickel, titanium, palladium, and gold metals with single-walled carbon nanotubes: A {DFT} approach. Results Phys. 12, 2100–2106 (2019).
  • 131. Han, J., Shen, J. & Gao, G. CrO2-based heterostructure and magnetic tunnel junction: perfect spin filtering effect, spin diode effect and high tunnel magnetoresistance. RSC Adv. 9, 3550–3557 (2019).
  • 132. He, Y., Cheng, N., Chen, C., Xiong, S. & Zhao, J. Tuning the electronic transport anisotropy in borophene via oxidation strategy. Sci. China Technol. Sci. (2019). doi:10.1007/s11431-018-9385-x
  • 133. Tachikawa, H., Iura, R. & Kawabata, H. Water-accelerated π-Stacking Reaction in Benzene Cluster Cation. Sci. Rep. 9, 2377 (2019).
  • 134. Giangrisostomi, E. et al. Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2. Sci. Rep. 9, (2019).
  • 135. Léonard, F., Foster, M. E. & Spataru, C. D. Prospects for Bioinspired Single-Photon Detection Using Nanotube-Chromophore Hybrids. Sci. Rep. 9, 3268 (2019).
  • 136. Seo, D. & Chang, J. Doping-Free Arsenene Heterostructure Metal-Oxide-Semiconductor Field Effect Transistors Enabled by Thickness Modulated Semiconductor to Metal Transition in Arsenene. Sci. Rep. 9, (2019).
  • 137. Narin, P. et al. Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements. Solid State Commun. 296, 8–11 (2019).
  • 138. Mishra, V. & Gopakumar, T. G. Comparing interactions in three-fold symmetric molecules at solid–air interface. Surf. Sci. 680, 11–17 (2019).
  • 139. Bian, B., Yang, J., Han, X. & Wei, J. Electronic transport induced by asymmetric adsorption site of sulfur in molecular device. Surf. Sci. 684, 52–57 (2019).
  • 140. Han, X., Yang, J., Yuan, P. & Bian, B. Spin-dependent transport in all-carbon multifunctional spintronic device. Eur. Phys. J. B 92, 32 (2019).
  • 141. Wu, X., Xiong, L., Feng, Y., Wang, C. & Gao, G. The half-metallicity and the spin filtering, NDR and spin Seebeck effects in 2D Ag-doped SnSe 2 monolayer. J. Chem. Phys. 150, 064701 (2019).
  • 142. Moran, I. W. & Carter, K. R. Gate Modulated Conductance of Extended Conjugation in Atomically Arrayed Molecular Assemblies. J. Phys. Chem. C acs.jpcc.8b12343 (2019). doi:10.1021/acs.jpcc.8b12343
  • 143. Fang, C. et al. Rational Design of Reversible Molecular Photoswitches Based on Diarylethene Molecules. J. Phys. Chem. C 123, 2736–2745 (2019).
  • 144. Li, H. et al. Effects of Molecular Combination and Side Groups for Thiophene-Benzene-Based Nanodevices. J. Phys. Chem. C 123, 2766–2774 (2019).
  • 145. Kachmar, A., Berdiyorov, G. & Madjet, M. E.-A. Effect of Water on the Structural, Optical, and Hot-Carrier Cooling Properties of the Perovskite Material {MASnI}3. J. Phys. Chem. C 123, 4056–4063 (2019).
  • 146. Koley, S., Sen, S. & Chakrabarti, S. Thermoelectric Switching of Single-Walled Carbon Nanotubes due to Encapsulation of Iodine Atomic Chain. J. Phys. Chem. C 123, 3996–4001 (2019).
  • 147. Zeng, J. & Chen, K.-Q. Charge Transport in Borophene: Role of Intrinsic Line Defects. J. Phys. Chem. C 123, 6270–6275 (2019).
  • 148. Mohamed, N. A. et al. Efficient Photoelectrochemical Performance of $\upgamma$ Irradiated g-C3N4 and Its g-C3N4@{BiVO}4 Heterojunction for Solar Water Splitting. J. Phys. Chem. C 123, 9013–9026 (2019).
  • 149. Sun, R. et al. Theoretical Study on the Interfacial Properties of Monolayer {TiS}3{\textendash}Metal Contacts for Electronic Device Applications. J. Phys. Chem. C 123, 7390–7396 (2019).
  • 150. Xu, L. et al. Pervasive Ohmic Contacts in Bilayer Bi2O2Se{\textendash}Metal Interfaces. J. Phys. Chem. C 123, 8923–8931 (2019).
  • 151. Singha, R. K., Tsuji, Y., Mahyuddin, M. H. & Yoshizawa, K. Methane Activation at the Metal{\textendash}Support Interface of Ni4{\textendash}{CeO}2(111) Catalyst: A Theoretical Study. J. Phys. Chem. C 123, 9788–9798 (2019).
  • 152. Ramasubramanian, A. et al. Lithium Diffusion Mechanism through Solid{\textendash}Electrolyte Interphase in Rechargeable Lithium Batteries. J. Phys. Chem. C 123, 10237–10245 (2019).
  • 153. Zhou, Y., Zheng, X., Cheng, Z.-Q. & Chen, K.-Q. Current Superposition Law Realized in Molecular Devices Connected in Parallel. J. Phys. Chem. C 123, 10462–10468 (2019).
atk/2019_年使用_quantumatk_发表的文章.txt · 最后更改: 2019/05/05 11:18 由 dong.dong

© 2014-2022 费米科技(京ICP备14023855号