用户工具

站点工具


atk:2018_年使用_quantumatk_发表的文章

2018 年使用 QuantumATK 发表的文章

  • 1. Liang, J. et al. Atomistic to circuit level modeling of defective doped SWCNTs with contacts for on-chip interconnect application. 2017 IEEE 12th Nanotechnol. Mater. Devices Conf. NMDC 2017 2018-Janua, 66–67 (2018).
  • 2. Voon, L. C. L. Y. Modeling the physical properties of two-dimensional nanomaterials for optoelectronic applications. 2018 3rd Int. Conf. Microw. Photonics, ICMAP 2018 2018-Janua, 1–2 (2018).
  • 3. Uhlig, B. et al. Progress on carbon nanotube BEOL interconnects. in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) 937–942 (IEEE, 2018). doi:10.23919/DATE.2018.8342144
  • 4. Reza, M. S., Arifunnabi, S. M. & Ahmed Jamal, G. R. PROPERTIES OF CNT-GNR INTERFACE THROUGH DFT SIMULATION. in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) 1–4 (IEEE, 2018). doi:10.1109/IC4ME2.2018.8465672
  • 5. Baneijee, L., Sengupta, A. & Rahman, H. Performance analysis of 2 dimensional AIN nMOS transistor with NEGF simulations. 2018 Int. Symp. Devices, Circuits Syst. ISDCS 2018 1–3 (2018). doi:10.1109/ISDCS.2018.8379670
  • 6. Yu, J., Horsley, J. R. & Abell, A. D. Peptides as Bio-Inspired Electronic Materials: An Electrochemical and First-Principles Perspective. Acc. Chem. Res. 51, 2237–2246 (2018).
  • 7. Li, T., He, C. & Zhang, W. Primitive and O-Functionalized R-Graphyne-like BN Sheet: Candidates for SO 2 Sensor with High Sensitivity and Selectivity at Room Temperature . ACS Appl. Electron. Mater. 1, 34–43 (2018).
  • 8. Zhang, Z. & Ouyang, G. Band Modulation of Black Phosphorus and Molybdenum Disulfide van der Waals Heterojunction: Twist and Electric Field Effects. ACS Appl. Energy Mater. 1, acsaem.8b01228 (2018).
  • 9. Balcı, E., Akkuş, Ü. Ö. & Berber, S. High TMR in MXene-Based Mn 2 CF 2 /Ti 2 CO 2 /Mn 2 CF 2 Magnetic Tunneling Junction . ACS Appl. Mater. Interfaces 11, 3609–3616 (2018).
  • 10. Fan, Z.-Q. Q., Jiang, X.-W. W., Chen, J. & Luo, J.-W. W. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors. ACS Appl. Mater. Interfaces 10, 19271–19277 (2018).
  • 11. Sun, X. et al. Sub-5 nm Monolayer Arsenene and Antimonene Transistors. ACS Appl. Mater. Interfaces 10, 22363–22371 (2018).
  • 12. Supur, M., Van Dyck, C., Bergren, A. J. & McCreery, R. L. Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Appl. Mater. Interfaces 10, 6090–6095 (2018).
  • 13. Deng, S., Li, L. & Zhang, Y. Strain Modulated Electronic, Mechanical, and Optical Properties of the Monolayer PdS 2 , PdSe 2 , and PtSe 2 for Tunable Devices . ACS Appl. Nano Mater. 1, 1932–1939 (2018).
  • 14. Mohanty, B. et al. MoS2 Quantum Dots as Efficient Catalyst Materials for the Oxygen Evolution Reaction. ACS Catal. 8, 1683–1689 (2018).
  • 15. Snurr, R. Q. et al. Evidence for Copper Dimers in Low-Loaded CuO x /SiO 2 Catalysts for Cyclohexane Oxidative Dehydrogenation . ACS Catal. 8, 9775–9789 (2018).
  • 16. Reda, M., Hansen, H. A. & Vegge, T. DFT Study of the Oxygen Reduction Reaction on Carbon-Coated Iron and Iron Carbide. ACS Catal. 8, 10521–10529 (2018).
  • 17. Sarkar, D. et al. Confined Liquid-Phase Growth of Crystalline Compound Semiconductors on Any Substrate. ACS Nano 12, 5158–5167 (2018).
  • 18. Manoharan, K. & Subramanian, V. Exploring Multifunctional Applications of Hexagonal Boron Arsenide Sheet: A DFT Study. ACS Omega 3, 9533–9543 (2018).
  • 19. Gracia-Espino, E., Barzegar, H. R. & Zettl, A. Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure. ACS Omega 3, 12930–12935 (2018).
  • 20. Liao, C., Zhao, Y. & Ouyang, G. Strain-Modulated Band Engineering in Two-Dimensional Black Phosphorus/MoS2 van der Waals Heterojunction. ACS Omega 3, 14641–14649 (2018).
  • 21. Wang, Y. et al. Transport and Photoelectric Properties of 2D Silicene/MX2 (M = Mo, W; X = S, Se) Heterostructures. ACS Omega 3, 13251–13262 (2018).
  • 22. Phongpreecha, T., Nicholas, J. D., Bieler, T. R. & Qi, Y. Computational design of metal oxides to enhance the wetting and adhesion of silver-based brazes on yttria-stabilized-zirconia. Acta Mater. 152, 229–238 (2018).
  • 23. Mendez, J. P., Arca, F., Ramos, J., Ortiz, M. & Ariza, M. P. Charge carrier transport across grain boundaries in graphene. Acta Mater. 154, 199–206 (2018).
  • 24. Graziano, M., Zahir, A., Mehdy, M. A. & Piccinini, G. VHDL-AMS Simulation Framework for Molecular-FET Device-to-Circuit Modeling and Design. Act. Passiv. Electron. Components 2018, 1–18 (2018).
  • 25. Meshginqalam, B. & Alaei, S. Transition metals adsorption and conductivity modification in carbon nanotubes: analytical modeling and DFT study. Adsorption 24, 575–583 (2018).
  • 26. Bäumer, C. et al. A Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO 3 -Based Memory Cell . Adv. Electron. Mater. 4, 1800062 (2018).
  • 27. Van Dyck, C. & Bergren, A. J. Large Built-In Fields Control the Electronic Properties of Nanoscale Molecular Devices with Dipolar Structures. Adv. Electron. Mater. 4, 1700656 (2018).
  • 28. Farquhar, A. K., Supur, M., Smith, S. R., Van Dyck, C. & McCreery, R. L. Hybrid Graphene Ribbon/Carbon Electrodes for High-Performance Energy Storage. Adv. Energy Mater. 8, 1802439 (2018).
  • 29. Li, D. et al. Graphene-Sensitized Perovskite Oxide Monolayer Nanosheets for Efficient Photocatalytic Reaction. Adv. Funct. Mater. 28, 1806284 (2018).
  • 30. Nosek, A. et al. Growth and Isolation of Large Area Boron-Doped Nanocrystalline Diamond Sheets: A Route toward Diamond-on-Graphene Heterojunction. Adv. Funct. Mater. 29, 1805242 (2018).
  • 31. Khan, M. E., Lee, J., Byeon, S. & Kim, Y. H. Semimetallicity and Negative Differential Resistance from Hybrid Halide Perovskite Nanowires. Adv. Funct. Mater. 1807620 (2018). doi:10.1002/adfm.201807620
  • 32. Jung, W. Bin et al. Polyelemental Nanolithography via Plasma Ion Bombardment: From Fabrication to Superior H2 Sensing Application. Adv. Mater. 1805343 (2018). doi:10.1002/adma.201805343
  • 33. Vohra, R. & Sawhney, R. S. Expounding Transport Properties of Deoxyribonucleic Acid for Electronic Applications. Adv. Sci. Lett. 24, 5982–5988 (2018).
  • 34. Dash, D., Pandey, C., Chaudhury, S. & Tripathy, S. Determination of Different Optical Properties for Cubic Titanium Dioxide: an Ab – Initio Approach. Adv. Sci. Technol. Res. J. 12, 223–232 (2018).
  • 35. KhademHosseini, V., Dideban, D., Ahmadi, M. T. & Ismail, R. An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor. AEU - Int. J. Electron. Commun. 90, 97–102 (2018).
  • 36. Tien, N. T., Phuc, V. T. & Ahuja, R. Tuning electronic transport properties of zigzag graphene nanoribbons with silicon doping and phosphorus passivation. AIP Adv. 8, 085123 (2018).
  • 37. He, J., Zhang, L., Fan, Z. Q. & Fan, D. Large negative differential resistance effect induced by boron-doping in zigzag phagraphene nanoribbon junctions. AIP Adv. 8, 095006 (2018).
  • 38. Zhou, T., Lanzillo, N. A., Bhosale, P., Gall, D. & Quon, R. A first-principles analysis of ballistic conductance, grain boundary scattering and vertical resistance in aluminum interconnects. AIP Adv. 8, 055127 (2018).
  • 39. Liu, X. Y., Shao, J., Zhang, X. Y. & Zheng, Y. Improving the rectifying performance of the pyrene-benzene system by optimizing its hydrocarbon bridge: A first-principles investigation. AIP Adv. 8, 115128 (2018).
  • 40. Kole, A. & Ang, D. S. First principle investigation of electronic transport properties of the edge shaped graphene-porphine molecular junction device. AIP Adv. 8, 085009 (2018).
  • 41. Jaiswal, N. K., Kumar, A. & Patel, C. Functionalization and migration of bromine adatoms on zigzag graphene nanoribbons: A first-principles study. in AIP Conference Proceedings 1953, 140122 (2018).
  • 42. Bhushan, B. S. & Srivastava, A. Integrated and differential quantum capacitance of graphene: A DFT study. in AIP Conference Proceedings 1953, 140125 (2018).
  • 43. Khan, M. S., Bhatia, M. & Srivastava, A. Structural and electronic properties of rectangular CdTe nanowire: A DST study. in AIP Conference Proceedings 1953, 140136 (2018).
  • 44. Meem, A. U. H., Chowdhury, O. & Morshed, A. K. M. M. Effect of vacancy defects on thermal conductivity of silicon nanowire: A molecular dynamics study. AIP Conf. Proc. 1980, 050023 (2018).
  • 45. Dandeliya, S. & Srivastava, A. Electron transport in ethanol & methanol absorbed defected graphene. in AIP Conference Proceedings 1953, 140140 (2018).
  • 46. Sharma, A., Husain, M., Srivastava, A. & Khan, M. S. Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor. in AIP Conference Proceedings 1953, 140075 (2018).
  • 47. Srivastava, R., Shrivastava, S. & Srivastava, A. Metallic → Semiconducting transitions in HX(X=F, Br, Cl) adsorbed (5,5) and (7,7) carbon nanotubes: DFT study. in AIP Conference Proceedings 1953, 030255 (2018).
  • 48. Adhityan, A., Kala, C. P. & Thiruvadigal, D. J. First principle investigation of rectification effect in gold/2,5-dicholorobenzene-1,3-dithiol/gold single molecular junction. in AIP Conference Proceedings 2005, 070001 (2018).
  • 49. Ferry, D. K. Relativistic Quantum Transport. An Introd. to Quantum Transp. Semicond. 473–516 (2018). doi:10.1201/9781315206226-11
  • 50. Jia, C. et al. Frontispiece: Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angew. Chemie Int. Ed. 57, 14222–14227 (2018).
  • 51. Ullah, H., Tahir, A. A., Bibi, S., Mallick, T. K. & Karazhanov, S. Z. Electronic properties of Β-TaON and its surfaces for solar water splitting. Appl. Catal. B Environ. 229, 24–31 (2018).
  • 52. Mat Teridi, M. A. et al. Enhanced photoelectrochemical performance of Z-scheme g-C 3 N 4 /BiVO 4 photocatalyst. Appl. Catal. B Environ. 234, 296–310 (2018).
  • 53. Ullah, H., Tahir, A. A. & Mallick, T. K. Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis. Appl. Catal. B Environ. 224, 895–903 (2018).
  • 54. Yao, A.-L., Dong, Y.-J., Wang, X.-F. & Liu, Y.-S. Electron transport through phenylene sandwiched between zigzag graphene nanoribbons. Appl. Nanosci. 1–7 (2018). doi:10.1007/s13204-018-0918-2
  • 55. Srivastava, A. & SanthiBhushan, B. Trade-off between quantum capacitance and thermodynamic stability of defected graphene: an implication for supercapacitor electrodes. Appl. Nanosci. 8, 637–644 (2018).
  • 56. Kothari, S. et al. Plasma-assisted As implants for effective work function modulation of TiN/HfO2 gate stacks on germanium. Appl. Phys. Lett. 112, 203503 (2018).
  • 57. Child, C. et al. Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study. Appl. Phys. Lett. 112, 163107 (2018).
  • 58. Han, J. & Gao, G. Large tunnel magnetoresistance and temperature-driven spin filtering effect based on the compensated ferrimagnetic spin gapless semiconductor Ti2MnAl. Appl. Phys. Lett. 113, 102402 (2018).
  • 59. Cheng, Y., Meng, R., Tan, C., Chen, X. & Xiao, J. Selective gas adsorption and I–V response of monolayer boron phosphide introduced by dopants: A first-principle study. Appl. Surf. Sci. 427, 176–188 (2018).
  • 60. Li, R., Liu, L., Ming, B., Ji, Y. & Wang, R. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets. Appl. Surf. Sci. 439, 983–990 (2018).
  • 61. Amutha, S. & Sen, A. Asymmetric Coulomb oscillation and giant anisotropic magnetoresistance in doped graphene nanojunctions. Appl. Surf. Sci. 449, 384–388 (2018).
  • 62. Sarkar, S., Sarswat, P. K. & Free, M. L. Metal oxides and novel metallates coated stable engineered steel for corrosion resistance applications. Appl. Surf. Sci. 456, 328–341 (2018).
  • 63. Hu, Y., Long, L., Mao, Y. & Zhong, J. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer. Appl. Surf. Sci. 442, 390–397 (2018).
  • 64. Wu, M. C., Chen, W. C., Chan, S. H. & Su, W. F. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Appl. Surf. Sci. 429, 9–15 (2018).
  • 65. Dmitriyeva, O., Hamm, S. C., Knies, D. L., Cantwell, R. & McConnell, M. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium. Appl. Surf. Sci. 440, 224–228 (2018).
  • 66. Dai, X. et al. First-principles study of monolayer SnS2(1−x)Se2x alloys as anode materials for lithium ion batteries. Appl. Surf. Sci. 457, 256–263 (2018).
  • 67. A, A., C, P. K. & D, J. T. First principle study on TMR effect in A-MgO-A (A = Fe, Co and Ni) magnetic tunnel junction. Appl. Surf. Sci. 449, 799–804 (2018).
  • 68. Sengupta, A. Lithium and sodium adsorption properties of two-dimensional aluminum nitride. Appl. Surf. Sci. 451, 141–147 (2018).
  • 69. Roy, T. R. & Sen, A. Charge transport behavior of 1D gold chiral nanojunctions. Appl. Surf. Sci. 449, 261–265 (2018).
  • 70. Janani, K. & John Thiruvadigal, D. Adsorption of essential minerals on L-glutamine functionalized zigzag graphene nanoribbon-A first principles DFT study. Appl. Surf. Sci. 449, 829–837 (2018).
  • 71. Peng, C. et al. Heterojunction bond relaxation and electronic reconfiguration of WS2- and MoS2-based 2D materials using BOLS and DFT. Appl. Surf. Sci. 462, 508–516 (2018).
  • 72. Janani, K. & D., J. T. Density functional study on covalent functionalization of zigzag graphene nanoribbon through L-Phenylalanine and boron doping: Effective nanocarriers in drug delivery applications. Appl. Surf. Sci. 449, 815–822 (2018).
  • 73. Ramya, S., Jeyaprakash, B. G., Anasthasiya, A. N. A., Balamurugan, D. & Rai, P. K. Adsorption property of volatile molecules on ZnO nanowires: computational and experimental approach. Bull. Mater. Sci. 41, 4 (2018).
  • 74. Wang, C., Mehdi Aghaei, S., Torres, I., Bhansali, S. & Rabiei Baboukani, A. Individual Gas Molecules Detection Using Zinc Oxide–Graphene Hybrid Nanosensor: A DFT Study. C 4, 44 (2018).
  • 75. Pilote, L., Gheribi, A. E. & Chartrand, P. Study of the solubility of Pb, Bi and Sn in aluminum by mixed CALPHAD/DFT methods: Applicability to aluminum machining alloys. Calphad Comput. Coupling Phase Diagrams Thermochem. 61, 275–287 (2018).
  • 76. Ekspong, J., Boulanger, N. & Gracia-Espino, E. Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon N. Y. 137, 349–357 (2018).
  • 77. Espinosa-Torres, N. D., Robles, M., Guillén-López, A., Muñiz, J. & Cuentas-Gallegos, A. K. Understanding bond formation and its impact on the capacitive properties of SiW12 polyoxometalates adsorbed on functionalized carbon nanotubes. Carbon N. Y. 130, 623–635 (2018).
  • 78. Wen, S., Gao, F., Yam, C. Y. & Gao, S. Nanomechanical control of spin current flip using monovacancy graphene. Carbon N. Y. 133, 218–223 (2018).
  • 79. Hu, R. et al. Structural stability, magneto-electronics and spin transport properties of triangular graphene nanoflake chains with edge oxidation. Carbon N. Y. 126, 93–104 (2018).
  • 80. Li, X., Cao, L., Long, M., Liu, Z. & Zhou, G. Spin-charge transport properties of a Z-shaped α-graphyne nanoribbon junction with different edge passivations. Carbon N. Y. 131, 160–167 (2018).
  • 81. Cao, L. et al. Spin-charge transport properties for graphene/graphyne zigzag-edged nanoribbon heterojunctions: A first-principles study. Carbon N. Y. 127, 519–526 (2018).
  • 82. Li, Q. et al. Ohmic contacts between monolayer WSe2 and two-dimensional titanium carbides. Carbon N. Y. 135, 125–133 (2018).
  • 83. Li, J., Xu, L. C., Yang, Y., Liu, X. & Yang, Z. The transport and optoelectronic properties of γ-graphyne-based molecular magnetic tunnel junctions. Carbon N. Y. 132, 632–640 (2018).
  • 84. Zeng, J., Chen, K. Q. & Tong, Y. X. Covalent coupling of porphines to graphene edges: Quantum transport properties and their applications in electronics. Carbon N. Y. 127, 611–617 (2018).
  • 85. Dong, Q. X., Hu, R., Fan, Z. Q. & Zhang, Z. H. Edge chemistry controlling effects on electronic structure, carrier mobility and device properties for phagraphene nanoribbons. Carbon N. Y. 130, 206–214 (2018).
  • 86. Yoon, S. H., Kang, U., Park, H., Abdel-Wahab, A. & Han, D. S. Computational density functional theory study on the selective conversion of CO2 to formate on homogeneously and heterogeneously mixed CuFeO2 and CuO surfaces. Catal. Today (2018). doi:10.1016/j.cattod.2018.12.043
  • 87. Wang, Y. et al. Effect of different substitution position on the switching behavior in single-molecule device with carbon nanotube electrodes. Chem. Phys. 500, 74–79 (2018).
  • 88. Bian, B., Yang, J., Han, X., Yuan, P. & Liao, B. Switching and oscillation of current along quinone based molecular device with graphene electrodes. Chem. Phys. 511, 27–32 (2018).
  • 89. Gao, X. J., Zhao, P. & Chen, G. Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons. Chem. Phys. Lett. 699, 250–254 (2018).
  • 90. Xie, F. et al. Effects of electrode type and anchoring group on transport properties of a single molecule electronic device. Chem. Phys. Lett. 713, 26–31 (2018).
  • 91. Nancy Anna Anasthasiya, A., Ramya, S., Rai, P. K. & Jeyaprakash, B. G. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour. Chem. Phys. Lett. 692, 50–56 (2018).
  • 92. Roy, P., Biswas, S., Pramanik, A. & Sarkar, P. Substitution induced carrier switching in S,N-heteroacene molecular junctions: A first principle analysis. Chem. Phys. Lett. 708, 87–93 (2018).
  • 93. Matsuura, Y. Tunnel magnetoresistance of ferrocene molecules. Chem. Phys. Lett. 692, 174–177 (2018).
  • 94. Farzadi, R., Milani Moghaddam, H. & Farmanzadeh, D. Tuning the spin transport properties of ferrocene-based single molecule junctions by different linkers. Chem. Phys. Lett. 704, 37–44 (2018).
  • 95. Frank, H., Joseph, W., McGregor, D. & López, G. E. The Electronic Structures of Nickel-Palladium Alloy Clusters: A Density Functional Theory Study. Chem. Lett. 47, 458–460 (2018).
  • 96. Puthirath Balan, A. et al. A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite. Chem. Mater. 30, 5923–5931 (2018).
  • 97. Lebedev, N., Yates, M. D., Griva, I. & Tender, L. M. Internal Redox Polarity of an Individual G. sulfurreducens Bacterial Cell Attached to an Inorganic Substrate. ChemPhysChem 19, 1820–1829 (2018).
  • 98. Liu, Y. et al. Diamine anchored molecular junctions of oligo(phenylene ethynylene) cruciform. Chinese Chem. Lett. 29, 271–275 (2018).
  • 99. Du, M. L., Hu, Y. J., Huang, J. & Li, Q. X. Electronic Transport Properties of Spin-Crossover Magnet Fe(II)-N4S2 Complexes. Chinese J. Chem. Phys. 31, 33–38 (2018).
  • 100. Kaur, R. P., Sawhney, R. S. & Engles, D. Quantum tunneling through aromatic molecular junctions for molecular devices: A review. Chinese J. Phys. 56, 2226–2234 (2018).
  • 101. Razeghi, M., Izadi Vishkayi, S. & Rahimpour Soleimani, H. The effect of geometric arrangement on the thermoelectric properties of Phenanthrene coupled to the graphene nanoribbons electrodes. Chinese J. Phys. 56, 2580–2588 (2018).
  • 102. Dash, D., Pandey, C. K., Chaudhury, S. & Tripathy, S. K. Structural, electronic, and mechanical properties of cubic TiO 2 : A first-principles study. Chinese Phys. B 27, 017102 (2018).
  • 103. Zhao, H., Peng, D. D., He, J., Li, X. M. & Long, M. Q. Effects of edge hydrogenation and Si doping on spin-dependent electronic transport properties of armchair boron-phosphorous nanoribbons. Chinese Phys. B 27, 108504 (2018).
  • 104. Dash, D., Pandey, C. K., Chaudhury, S. & Tripathy, S. K. Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study. Chinese Phys. B 27, 017102 (2018).
  • 105. Liu, Y. et al. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons. Chinese Phys. Lett. 35, 067101 (2018).
  • 106. Kanaani, A., Vakili, M., Ajloo, D. & Nekoei, M. Current-Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: A Light-Driven Molecular Switch. Chinese Phys. Lett. 35, 048501 (2018).
  • 107. Sajjan, M. & Mazziotti, D. A. Current-constrained density-matrix theory to calculate molecular conductivity with increased accuracy. Commun. Chem. 1, (2018).
  • 108. Wan, H., Chen, X., Jia, C. & Zhou, G. Spin-Dependent Transport Properties of a Phenylene Rotor Bridging Carbon Chains Between Graphene Electrodes. Commun. Comput. Phys. 23, (2018).
  • 109. Nguyen, T. T., Bui, H. T., Nguyen, U. Van & Le, T. Tuning Electronic Transport Properties of Zigzag Graphene Nanoribbons with Stone-Wales Defect. Commun. Phys. 28, 201 (2018).
  • 110. Ferreira, C. G. et al. TiO 2 /graphene and TiO 2 /graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Compos. Part B Eng. 145, 39–46 (2018).
  • 111. Mavromaras, A. et al. Unravelling the Potential of Density Functional Theory through Integrated Computational Environments: Recent Applications of the Vienna Ab Initio Simulation Package in the MedeA® Software. Computation 6, 63 (2018).
  • 112. Dias, F. S. & Machado, W. S. The effects of computational time parameter in the thermal conductivity of single-walled carbon nanotubes by molecular dynamics simulation. Comput. Condens. Matter 15, 21–24 (2018).
  • 113. Ghadiyali, M. & Chacko, S. Band splitting in bilayer stanene electronic structure scrutinized via first principle DFT calculations. Comput. Condens. Matter 17, e00341 (2018).
  • 114. Sharma, B., Sengupta, A. & Sarkar, C. K. Computational study of CNT based nanoscale reversible mass transport archival memory with Fe, Co and Ni nano-shuttles. Comput. Mater. Sci. 146, 112–118 (2018).
  • 115. Yang, X. et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources. Comput. Mater. Sci. 146, 319–333 (2018).
  • 116. Lan, T., Ragab, T. & Basaran, C. Electron-phonon scattering and Joule heating in copper at extreme cold temperatures. Comput. Mater. Sci. 149, 397–408 (2018).
  • 117. Zhang, L., Dai, X., Li, J., Wang, Z. & Li, H. Electronic transport properties of heterojunction Pb/Pb-Si nanochain devices. Comput. Mater. Sci. 155, 216–223 (2018).
  • 118. Cheng, N., He, Y., Sun, Z. & Zhao, J. Diverse electron transfer behavior through saturated molecular chains: From molecular insulator to semiconductor. Comput. Mater. Sci. 153, 200–207 (2018).
  • 119. Li, C., Wu, G., Wang, C., Ma, D. & Wang, B. Electronic and transport properties for Ti3C2O2 under the influence of a vertical electric field and stacking number. Comput. Mater. Sci. 147, 186–193 (2018).
  • 120. Zhang, J., Zhang, W., Ragab, T. & Basaran, C. Mechanical and electronic properties of graphene nanomesh heterojunctions. Comput. Mater. Sci. 153, 64–72 (2018).
  • 121. Yamacli, S. Investigation and comparison of the large-signal characteristics and dynamical parameters of silicene and germanene nanoribbon interconnects. Comput. Mater. Sci. 141, 353–359 (2018).
  • 122. Wu, G. et al. Tuning electronic and transport properties of MoS2/Ti2C heterostructure by external strain and electric field. Comput. Mater. Sci. 153, 417–423 (2018).
  • 123. Boltayev, F., Eshonqulov, G. B. & Berdiyorov, G. R. Electronic transport calculations for CO2 adsorption on calcium-decorated graphene nanoribbons. Comput. Mater. Sci. 145, 134–139 (2018).
  • 124. Korol, R., Kilgour, M. & Segal, D. ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker’s probes. Comput. Phys. Commun. 224, 396–404 (2018).
  • 125. Nagarajan, V. & Chandiramouli, R. Switching behaviour of stilbene molecular device: A first-principles study. Condens. Matter Phys. 21, 43010–43012 (2018).
  • 126. Xin, J. G., Yang, C. L., Wang, M. S. & Ma, X. G. OPE molecular junction as a hydrogen gas sensor. Curr. Appl. Phys. 18, 273–279 (2018).
  • 127. Roldan, A. Frontiers in first principles modelling of electrochemical simulations. Curr. Opin. Electrochem. 10, 1–6 (2018).
  • 128. Heidari, H., Dideban, D., Khademhosseini, V., Ahmadi, M. & Ismail, R. Single Electron Transistor Scheme Based on Multiple Quantum Dot Islands: Carbon Nanotube and Fullerene. ECS J. Solid State Sci. Technol. 7, M145–M152 (2018).
  • 129. Khademhosseini, V., Dideban, D., Heidari, H., Ahmadi, M. T. & Ismail, R. Impact of Hydrogen Adsorption on the Performance of a Single Electron Transistor Utilizing Fullerene Quantum Dots. ECS J. Solid State Sci. Technol. 7, M191–M194 (2018).
  • 130. Dabral, A. et al. Study of the Intrinsic Limitations of the Contact Resistance of Metal/Semiconductor Interfaces through Atomistic Simulations. ECS J. Solid State Sci. Technol. 7, N73–N80 (2018).
  • 131. Johari, Z., Alias, N. E. & Auzar, Z. Current Conduction in Dual Channel Black Phosphorene Nanoribbon Transistor. Elektr. J. Electr. Eng. 17, 35–38 (2018).
  • 132. Li, J. H. et al. Geometric symmetry modulated spin polarization of electron transport in graphene-like zigzag FeB2 nanoribbons. Eur. Phys. J. B 91, 154 (2018).
  • 133. Rastgoo, M., Tabatabaei, S. M. & Fathipour, M. A first-principles study on DNA sequencing using graphene quantum dot. Eur. Phys. J. B 91, 121 (2018).
  • 134. Sharma, B. L. Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon: Transmission in an armchair nanotube without a zigzag half-line of dimers. Eur. Phys. J. B 91, 84 (2018).
  • 135. Bian, B., Yang, J., Han, X., Shi, H. & Ding, Y. Switching behavior induced by different substituents of group in single molecular device. Eur. Phys. J. B 91, 184 (2018).
  • 136. Lee, M. E. et al. First-principles study of electron transport through phase-engineered Au-Mo Te2contacts. Eur. Solid-State Device Res. Conf. 2018-Septe, 38–41 (2018).
  • 137. Nikolić, B. K. et al. First-Principles Quantum Transport Modeling of Spin-Transfer and Spin-Orbit Torques in Magnetic Multilayers. in Handbook of Materials Modeling 1–35 (Springer International Publishing, 2018). doi:10.1007/978-3-319-50257-1_112-1
  • 138. Cui, H., Zheng, K., Zhang, Y., Ye, H. & Chen, X. Superior Selectivity and Sensitivity of C<inf>3</inf>N Sensor in Probing Toxic Gases NO<inf>2</inf>and SO<inf>2</inf>. IEEE Electron Device Lett. 39, (2018).
  • 139. Cui, H., Zheng, K., Zhang, Y., Ye, H. & Chen, X. Superior Selectivity and Sensitivity of C3N Sensor in Probing Toxic Gases NO2and SO2. IEEE Electron Device Lett. 39, 284–287 (2018).
  • 140. Chen, D. et al. Theoretical Study of Monolayer PtSe2 as Outstanding Gas Sensor to Detect SF6 Decompositions. IEEE Electron Device Lett. 39, 1405–1408 (2018).
  • 141. Wang, J. et al. A Reusable and High Sensitivity Nitrogen Dioxide Sensor Based on Monolayer SnSe. IEEE Electron Device Lett. 39, 599–602 (2018).
  • 142. Singh, D. et al. Bottom-up methodology for predictive simulations of self-heating in aggressively scaled process technologies. IEEE Int. Reliab. Phys. Symp. Proc. 2018-March, 6F.61-6F.67 (2018).
  • 143. Kochar, R. & Choudhary, S. MoS 2 /Phosphorene Heterostructure for Optical Absorption in Visible Region. IEEE J. Quantum Electron. 54, 1–6 (2018).
  • 144. Jhon, Y. I., Lee, J., Jhon, Y. M. & Lee, J. H. Topological Insulators for Mode-locking of 2-μm Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 24, 1–1 (2018).
  • 145. Nasri, A., Boubaker, A., Hafsi, B., Khaldi, W. & Kalboussi, A. High-sensitivity sensor using C60-single molecule transistor. IEEE Sens. J. 18, 248–254 (2018).
  • 146. Dandeliya, S. & Srivastava, A. Defected graphene as ammonia sensor: Theoretical Insight. IEEE Sens. J. 19, 2031–2038 (2018).
  • 147. Sharma, A. et al. Sensing of CO and NO on Cu-Doped MoS2 Monolayer-Based Single Electron Transistor: A First Principles Study. IEEE Sens. J. 18, 2853–2860 (2018).
  • 148. Zhang, X., Chen, D., Liu, H., Tang, J. & Li, Y. Detecting Decompositions of Sulfur Hexafluoride Using MoS 2 Monolayer as Gas Sensor . IEEE Sens. J. 19, 39–46 (2018).
  • 149. Chen, D., Zhang, X., Tang, J., Pi, S. & Cui, H. A Promising Gas Sensor Based on Monolayer <![CDATA[<inline-formula> <tex-math notation=“LaTeX”>$\alpha $</tex-math> </inline-formula>]]>-SbN to Detect SO 2 Among SF 6 Decompositions. IEEE Sensors Lett. 2, 1–4 (2018).
  • 150. Jiao, J. et al. Tuning the Electronic Structures and Transport Properties of Zigzag Blue Phosphorene Nanoribbons. IEEE Trans. Electron Devices 65, 4646–4651 (2018).
  • 151. Lee, J. et al. Understanding Electromigration in Cu-CNT Composite Interconnects: A Multiscale Electrothermal Simulation Study. IEEE Trans. Electron Devices 65, 3884–3892 (2018).
  • 152. Dong, Z. & Guo, J. On Low-Resistance Contacts to 2-D MoTe2by Crystalline Phase Junctions. IEEE Trans. Electron Devices 65, 1583–1588 (2018).
  • 153. Sharma, V., Srivastava, P. & Jaiswal, N. K. Edge-Oxidized Germanene Nanoribbons for Nanoscale Metal Interconnect Applications. IEEE Trans. Electron Devices 65, 3893–3900 (2018).
  • 154. Chen, R. et al. Variability Study of MWCNT Local Interconnects Considering Defects and Contact Resistances–Part II: Impact of Charge Transfer Doping. IEEE Trans. Electron Devices 1–8 (2018). doi:10.1109/TED.2018.2868424
  • 155. Yadav, G. & Choudhary, S. Tuning the Optical Properties of Zinc Sulfide Nanotube. IEEE Trans. Nanotechnol. 17, 807–813 (2018).
  • 156. Liang, J., Lee, J., Berrada, S., … V. G.-I. T. & 2018, U. Atomistic- to Circuit-Level Modeling of Doped SWCNT for On-Chip Interconnects. IEEE Trans. Nanotechnol. 17, 1084–1088 (2018).
  • 157. Deng, S., Zhang, Y. & Li, L. Strain Magnitude and Direction Effect on the Energy Band Structure of Hexagonal and Orthorhombic Monolayer MoS<inline-formula> <tex-math notation=“LaTeX”>$_2$</tex-math> </inline-formula>. IEEE Trans. Nanotechnol. 17, 419–423 (2018).
  • 158. Ghosh, K., Mahapatra, N., … H. R.-I. T. & 2019, U. Prediction of Adsorption Probability of Oxidizing and Reducing Species on 2-D Hybrid Junction of rGO-ZnO From First Principle Analysis. IEEE Trans. Nanotechnol. 18, 119–125 (2018).
  • 159. Dey, D., Roy, P. & De, D. Electronic enhancement effect of doped ferromagnetic material in biomolecular heterojunction switch. IET Circuits, Devices Syst. 13, 79–90 (2018).
  • 160. Roy, P., Dey, D. & De, D. First principle approach towards logic design using hydrogen-doped single-strand DNA. IET Nanobiotechnology 13, 77–83 (2018).
  • 161. Dixit, H., Cho, J. & Benistant, F. First-principles evaluation of resistance contributions in Ruthenium interconnects for advanced technology nodes. Int. Conf. Simul. Semicond. Process. Devices, SISPAD 2018-Septe, 220–223 (2018).
  • 162. Restrepo, O. D., Gao, Q., Pandey, S. M., Cruz-Silva, E. & Bazizi, E. M. First Principles Calculations of the Effect of Stress in the I-V Characteristics of the CoSi2/Si Interface. Int. Conf. Simul. Semicond. Process. Devices, SISPAD 2018-Septe, 67–70 (2018).
  • 163. Gunst, T., Blom, A. & Stokbro, K. First-principles method for the phonon-limited resistivity of metals. Int. Conf. Simul. Semicond. Process. Devices, SISPAD 2018-Septe, 79–82 (2018).
  • 164. Mo, S. et al. ELECTRONIC TRANSPORT PROPERTIES OF SILICON NANOWIRE CAGE. in International Heat Transfer Conference 16 6023–6027 (Begellhouse, 2018). doi:10.1615/IHTC16.mpe.022406
  • 165. Wan, H. et al. The first-principles calculation on electronic transport properties of Al 2 N 2 clusters . Int. J. Mod. Phys. B 32, 1850326 (2018).
  • 166. Hosseini, V. K., Dideban, D., Ahmadi, M. T. & Ismail, R. Analysis and modeling of quantum capacitance on graphene single electron transistor. Int. J. Mod. Phys. B 32, 1850235 (2018).
  • 167. Liang, Y. et al. An ab initio study on the effect of iron atom junction on transport characteristics of carbon–silicon mixed chain . Int. J. Mod. Phys. B 32, 1850098 (2018).
  • 168. Xia, C. J. et al. Effects of different tailoring graphene electrodes on the rectification and negative differential resistance of molecular devices. Int. J. Mod. Phys. B 32, 1850323 (2018).
  • 169. Muthaiyan, L., Sriram, S. & Balamurugan, D. The electronic transport properties of CuO and Zn doped CuO nanotubes. Int. J. Nanoelectron. Mater. 11, 33–42 (2018).
  • 170. Vohra, R. & Sawhney, R. S. Contemplating nanometer scale transport characteristics through aromatic molecules based molecular devices. Int. J. Nanoelectron. Mater. 11, 333–346 (2018).
  • 171. Staykov, A., Ferreira‐Neto, E., … J. C.-… J. of Q. & 2018, U. The stability of titania‐silica interface. Int. J. Quantum Chem. 118, e25495 (2018).
  • 172. Bian, J. yu, Zhang, Y. & Chang, Y. fei. The negative differential resistance mechanism of a molecular device based on double-cage fluorinated fullerene C20F18(NH)2C20F18: A theoretical study. Int. J. Quantum Chem. 118, e25630 (2018).
  • 173. Ramos-Berdullas, N., Gil-Guerrero, S. & Mandado, M. Transmission channels in the time-energy uncertainty relation approach to molecular conductance: Symmetry rules for the electron transport in molecules. Int. J. Quantum Chem. 118, e25651 (2018).
  • 174. Rashid, H., Koel, A. & Rang, T. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon. IOP Conf. Ser. Mater. Sci. Eng. 362, 012001 (2018).
  • 175. Kobayashi, N., Ishii, H. & Hirose, K. Theory of electron transport at the atomistic level. Jpn. J. Appl. Phys. 57, 08NA01 (2018).
  • 176. Mishra, K. K. & Shukla, S. K. Theoretical Investigation of Molecular and Lattice Dynamical Behaviour of GaP (111) Surface for Optoelectronic Device Applications. J. Adv. Phys. 6, 465–469 (2018).
  • 177. Mortazavi, B., Berdiyorov, G. R., Shahrokhi, M. & Rabczuk, T. Mechanical, optoelectronic and transport properties of single-layer Ca2N and Sr2N electrides. J. Alloys Compd. 739, 643–652 (2018).
  • 178. Kim, K., He, J., Ganeshan, B. & Liu, J. Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures. J. Appl. Phys. 124, 055104 (2018).
  • 179. Peng, D., Zhang, X., Li, X., Wu, D. & Long, M. First-principles study of electric field effect and spin-polarization transport properties of zigzag α-2 graphyne nanoribbons. J. Appl. Phys. 124, 184303 (2018).
  • 180. Long, M., Xu, H., Li, M., Liu, A. & Yi, X. First principles study on the electronic structures and transport properties of armchair/zigzag edge hybridized graphene nanoribbons. J. Appl. Phys. 123, 204303 (2018).
  • 181. Zhou, T., Zheng, P., Pandey, S. C., Sundararaman, R. & Gall, D. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges. J. Appl. Phys. 123, 155107 (2018).
  • 182. Chu, Y., Sarangapani, P., Charles, J., Klimeck, G. & Kubis, T. Explicit screening full band quantum transport model for semiconductor nanodevices. J. Appl. Phys. 123, 244501 (2018).
  • 183. Kaur, M., Sawhney, R. S. & Engles, D. Negative differential resistance observation in complex convoluted fullerene junctions. J. Appl. Phys. 123, 161511 (2018).
  • 184. Dong, Z., Cao, X., Wu, T. & Guo, J. Tunneling current in HfO2and Hf0.5Zr0.5O2-based ferroelectric tunnel junction. J. Appl. Phys. 123, 094501 (2018).
  • 185. Gao, J., Nandi, D. & Gupta, M. Density functional theory - projected local density of states - based estimation of Schottky barrier for monolayer MoS2. J. Appl. Phys. 124, 014502 (2018).
  • 186. Yang, Z. et al. Modulate the direct-current and alternating-current transport properties of magnetic γ-graphyne heterojunctions by chemical modification. J. Appl. Phys. 124, 084501 (2018).
  • 187. Balatsky, A. V. et al. Spatial dependence of the super-exchange interactions for transition-metal trimers in graphene. J. Appl. Phys. 123, 013903 (2018).
  • 188. Lanzillo, N. A. et al. Defect and grain boundary scattering in tungsten: A combined theoretical and experimental study. J. Appl. Phys. 123, 154303 (2018).
  • 189. Chen, T. et al. High-performance spin rectification in gallium nitride-based molecular junctions with asymmetric edge passivation. J. Appl. Phys. 124, 215102 (2018).
  • 190. Mukherjee, A., Vasileska, D. & Goldan, A. H. Hole transport in selenium semiconductors using density functional theory and bulk Monte Carlo. J. Appl. Phys. 124, 235102 (2018).
  • 191. Nenuwe, O. & Azi, O. Molecular dynamics of liquid Zirconia: effect of pressure. J. Appl. Sci. Environ. Manag. 22, 1527 (2018).
  • 192. Nenuwe, O. N. & Osafile, O. E. Temperature dependence of Self-diffusion coefficient (SDC) of liquid aluminum using Embedded Atom Method-Finnis-Sinclair (EAMFS) potential. J. Appl. Sci. Environ. Manag. 22, 519 (2018).
  • 193. Vohra, R. & Sawhney, R. S. Influence of anchors on the quantum transport through benzene based molecular wire. J. Bionanoscience 12, 58–63 (2018).
  • 194. Dieb, T. M., Hou, Z. & Tsuda, K. Structure prediction of boron-doped graphene by machine learning. J. Chem. Phys. 148, 241716 (2018).
  • 195. Wang, M. et al. Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions. J. Chem. Phys. 148, 184703 (2018).
  • 196. Zhao, P. & Chen, G. Spin-polarized and thermospin-polarized transport properties of phthalocyanine dimer based molecular junction with different transition metal atoms. J. Chem. Phys. 149, 134305 (2018).
  • 197. Stoliaroff, A., Jobic, S. & Latouche, C. PyDEF 2.0: An Easy to Use Post-treatment Software for Publishable Charts Featuring a Graphical User Interface. J. Comput. Chem. 39, 2251–2261 (2018).
  • 198. Kala, C. P. & Thiruvadigal, D. J. First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior. J. Comput. Electron. 17, 580–585 (2018).
  • 199. Han, X. et al. Spin-dependent transport in a multifunctional spintronic device with graphene nanoribbon electrodes. J. Comput. Electron. 17, 604–612 (2018).
  • 200. Sun, R., Ye, X., Yang, G. & Wang, J. Comparative study on interfacial properties of Mo, Nb, and W contacts with monolayer MoS2. J. Comput. Electron. 17, 29–34 (2018).
  • 201. Divya Bharathi, N. & Sivasankaran, K. Performance analysis of a substrate-engineered monolayer MoS2 field-effect transistor. J. Comput. Electron. 1–9 (2018). doi:10.1007/s10825-018-1282-x
  • 202. Jain, B. et al. A tetracene-based single-electron transistor as a chlorine sensor. J. Comput. Electron. 17, 1515–1520 (2018).
  • 203. Khademhosseini, V., Dideban, D., Ahmadi, M. T. & Ismail, R. The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island. J. Comput. Electron. (2018). doi:10.1007/s10825-018-01290-3
  • 204. de Carvalho, R. P., Miranda, C. R. & da Silva, A. F. The role of Cr on the electronic and optical properties of InCrN: A first principles study. J. Cryst. Growth 499, 13–17 (2018).
  • 205. Despotuli, A. L. & Andreeva, A. V. Spatial averaging of electrostatic potential differences in layered nanostructures with ionic hopping conductivity. J. Electroanal. Chem. 829, 1–6 (2018).
  • 206. Sakina, S. H. et al. Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study. J. Electron. Mater. 47, 2768–2775 (2018).
  • 207. Auzar, Z., Johari, Z., Sakina, S. H. & Alias, N. E. Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment. J. Electron. Mater. 47, 1208–1217 (2018).
  • 208. Kaur, S., Narang, S. B. & Randhawa, D. K. K. Tunable Thermoelectric Performance in Porous Armchair Graphene Nanoribbons as a Function of Strain, Pore Morphology and Temperature. J. Electron. Mater. 47, 6467–6475 (2018).
  • 209. Upadhyay, O. P., Paudel, S., Srivastava, A., Adhikari, P. R. & Kaphle, G. C. First Principles Study of Electronic and Optical Properties of Pristine and X (Cu, Ag And Au) Doped BiOBr. J. Inst. Sci. Technol. 22, 63–69 (2018).
  • 210. Yuan, X. et al. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction. J. Magn. Magn. Mater. 453, 101–106 (2018).
  • 211. Huang, H., Zheng, A., Gao, G. & Yao, K. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron. J. Magn. Magn. Mater. 449, 522–529 (2018).
  • 212. Xu, M. et al. Multifunctional NiTiO3 nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides. J. Mater. Chem. A 6, 2643–2652 (2018).
  • 213. Liang, Y. et al. Novel titanium nitride halide TiNX (X = F, Cl, Br) monolayers: Potential materials for highly efficient excitonic solar cells. J. Mater. Chem. A 6, 2073–2080 (2018).
  • 214. Dai, Y., Liang, Y., Huang, B., Wei, W. & Ju, L. Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst. J. Mater. Chem. A 6, 21087–21097 (2018).
  • 215. Ma, S., Yuan, D., Wang, Y. & Jiao, Z. Monolayer GeS as a potential candidate for NO2 gas sensors and capturers. J. Mater. Chem. C 6, 8082–8091 (2018).
  • 216. Bai, Y., Zhao, J., Gao, N., Zhou, S. & Liu, N. Selecting electrode materials for monolayer ReS 2 with an Ohmic contact . J. Mater. Chem. C 6, 6764–6770 (2018).
  • 217. Borders, B. et al. Tuning the optoelectronic characteristics of ionic organic crystalline assemblies. J. Mater. Chem. C 6, 4041–4056 (2018).
  • 218. Yan, J. et al. Monolayer tellurene–metal contacts. J. Mater. Chem. C 6, 6153–6163 (2018).
  • 219. Feng, Y., Wu, X., Han, J. & Gao, G. Robust half-metallicities and perfect spin transport properties in 2D transition metal dichlorides. J. Mater. Chem. C 6, 4087–4094 (2018).
  • 220. Liu, S. et al. Gate-tunable interfacial properties of in-plane ML MX2 1T′-2H heterojunctions. J. Mater. Chem. C 6, 5651–5661 (2018).
  • 221. Fang, Q. et al. Interfacial electronic states and self-formed p-n junctions in hydrogenated MoS2/SiC heterostructure. J. Mater. Chem. C 6, 4523–4530 (2018).
  • 222. Li, L., Mi, J., Yong, Y., Mao, B. & Shi, W. First-principles study on the lattice plane and termination dependence of the electronic properties of the NiO/CH3NH3PbI3 interfaces. J. Mater. Chem. C 6, 8226–8233 (2018).
  • 223. Zhang, G. P. et al. Designing molecular rectifiers and spin valves using metallocene-functionalized undecanethiolates: One transition metal atom matters. J. Mater. Chem. C 6, 2105–2112 (2018).
  • 224. Wu, D. D., Fu, H. H., Liu, Q. B. & Wu, R. How to realize the spin-Seebeck effect with a high spin figure of merit in magnetic boron-nitrogen nanoribbon and nanotube structures? J. Mater. Chem. C 6, 10603–10610 (2018).
  • 225. Pan, P., Hu, Y., Zhang, G., Yang, Z. Di & Zeng, X. C. Hybrid nanobud-array structures (C24)n/MoS2 and (C24V)n/MoS2: Two-dimensional half metallic and ferromagnetic materials. J. Mater. Chem. C 6, 3373–3386 (2018).
  • 226. Dai, X., Zhang, L., Li, J., Wang, Z. & Li, H. Electronic transport properties of heterojunction devices constructed by single-wall Fe2Si and carbon nanotubes. J. Mater. Chem. C 6, 5794–5802 (2018).
  • 227. Sharma, A., Srivastava, A., Husain, M. & Khan, M. S. Computational investigations of Cu-embedded MoS2 sheet for CO oxidation catalysis. J. Mater. Sci. 53, 9578–9588 (2018).
  • 228. Sharma, P., Singh, S., Gupta, S. & Kaur, I. Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications. J. Mater. Sci. Mater. Electron. 29, 2883–2889 (2018).
  • 229. Nagarajan, V., Bhattacharyya, A. & Chandiramouli, R. Adsorption of ammonia molecules and humidity on germanane nanosheet—A density functional study. J. Mol. Graph. Model. 79, 149–156 (2018).
  • 230. Ostovan, A., Mahdavifar, Z. & Bamdad, M. Length–dependence of conductance in benzothiadiazole molecular wires between graphene nanoribbon electrodes: Effect of conformational changes. J. Mol. Liq. 269, 639–649 (2018).
  • 231. Allal, H., Belhocine, Y. & Zouaoui, E. Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J. Mol. Liq. 265, 668–678 (2018).
  • 232. Kaur, M., Sawhney, R. S. & Engles, D. Ab initio scrutiny of endohedral C20fullerenes implanted in between gold electrodes. J. Mol. Model. 24, 81 (2018).
  • 233. Kaur, R., Narang, S. B. & Randhawa, D. K. K. Investigating the influence of electrode Miller indices alteration on electronic transport in thiophene-based molecular junctions. J. Mol. Model. 24, 63 (2018).
  • 234. Walia, G. K. & Randhawa, D. K. K. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts. J. Mol. Model. 24, 94 (2018).
  • 235. Walia, G. K. & Randhawa, D. K. K. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons. J. Mol. Model. 24, 242 (2018).
  • 236. Vohra, R. & Sawhney, R. S. Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices. J. Mol. Model. 24, 330 (2018).
  • 237. Magno, M. & Hagelberg, F. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters. J. Mol. Model. 24, 35 (2018).
  • 238. Bhattacharya, B., Mondal, R. & Sarkar, U. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis. J. Mol. Model. 24, 278 (2018).
  • 239. Goumri-Said, S., Khan, M. S., Kanoun, M. B., Srivastava, A. & Gupta, P. Electronic and optical properties of functionalized zigzag ZnO nanotubes. J. Mol. Model. 24, 48 (2018).
  • 240. Sergeyev, D. M. Computer simulation of electrical characteristics of a graphene cluster with Stone-Wales Defects. J. Nano- Electron. Phys. 10, (2018).
  • 241. Dandeliya, S., Khan, M. S. & Srivastava, A. Electron Transport in Ammonia Adsorbed Functionalized Carbon Nanotube. J. Nanoelectron. Optoelectron. 13, 306–313 (2018).
  • 242. Manhas, S. K. et al. Design and Simulation of CNT Based Nano-Transistor for Greenhouse Gas Detection. J. Nanoelectron. Optoelectron. 13, 593–601 (2018).
  • 243. Sharma, B., Kundu, C., Rahaman, H. & Sarkar, C. K. Study of TMR with Different Ferromagnetic Material and Variations in Spin-Split, Thickness and Oxide Barrier Height of a MTJ Memory Device. J. Nanoelectron. Optoelectron. 13, 245–250 (2018).
  • 244. Hosseini, V. K., Ahmadi, M. T., Afrang, S. & Ismail, R. Analysis and Simulation of Coulomb Blockade and Coulomb Diamonds in Fullerene Single Electron Transistors. J. Nanoelectron. Optoelectron. 13, 138–143 (2018).
  • 245. Wang, X. & Shen, J. Electrical Transport Properties of Graphene Nanoribbons with Green Function. J. Nanoelectron. Optoelectron. 12, 1223–1227 (2018).
  • 246. Kaur, M., Sawhney, R. S. & Engles, D. The Density Functional Implementation of Hybrid Graphene Devices Stringed to C 20 Fullerene . J. Nanoelectron. Optoelectron. 12, 1146–1153 (2018).
  • 247. Vohra, R. & Sawhney, R. S. Adenine Based Molecular Biomarker for the Diagnosis of Lead and Mercury Presence in a Live Sample. J. Nanoelectron. Optoelectron. 13, 554–561 (2018).
  • 248. Kaur, M., Nayyar, P., Vohra, R. & Sawhney, R. S. Analyzing Porphine Based Molecular Junctions with Cu, Ag, Au Electrodes. J. Nanoelectron. Optoelectron. 12, 1077–1083 (2018).
  • 249. Sloyan, K. et al. Discerning the Contribution of Morphology and Chemistry in Wettability Studies. J. Phys. Chem. A 122, 7768–7773 (2018).
  • 250. Kar, M., Rajbanshi, B., Pal, S. & Sarkar, P. Engineering the Electronic Structure of Tin Sulfide Nanoribbons: A Computational Study. J. Phys. Chem. C 122, 5731–5741 (2018).
  • 251. Mayengbam, R., Tripathy, S. K. & Palai, G. First-Principle Insights of Electronic and Optical Properties of Cubic Organic-Inorganic MAGexPb(1- x)I3 Perovskites for Photovoltaic Applications. J. Phys. Chem. C 122, 28245–28255 (2018).
  • 252. Bhattacharyya, K., Pratik, S. M. & Datta, A. Controlled Pore Sizes in Monolayer C2N Act as Ultrasensitive Probes for Detection of Gaseous Pollutants (HF, HCN, and H2S). J. Phys. Chem. C 122, 2248–2258 (2018).
  • 253. Wang, Z. Q. et al. High-Performance Single-Molecule Switch Designed by Changing Parity of Electronic Wave Functions via Intramolecular Proton Transfer. J. Phys. Chem. C 122, 17650–17659 (2018).
  • 254. Müller, M. et al. Effect of Structural Fluctuations on Elastic Lifetimes of Adsorbate States: Isonicotinic Acid on Rutile(110). J. Phys. Chem. C 122, 7575–7585 (2018).
  • 255. Domenico, J., Foster, M. E., Spoerke, E. D., Allendorf, M. D. & Sohlberg, K. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules. J. Phys. Chem. C 122, 10846–10856 (2018).
  • 256. Prasongkit, J. et al. Topological Line Defects Around Graphene Nanopores for DNA Sequencing. J. Phys. Chem. C 122, 7094–7099 (2018).
  • 257. Li, S. et al. Interfacial Properties of Monolayer SnS-Metal Contacts. J. Phys. Chem. C 122, 12322–12331 (2018).
  • 258. Jin, C. & Solomon, G. C. Controlling Band Alignment in Molecular Junctions: Utilizing Two-Dimensional Transition-Metal Dichalcogenides as Electrodes for Thermoelectric Devices. J. Phys. Chem. C 122, 14233–14239 (2018).
  • 259. Valdiviezo, J. & Palma, J. L. Molecular Rectification Enhancement Based on Conformational and Chemical Modifications. J. Phys. Chem. C 122, 2053–2063 (2018).
  • 260. Jiang, C. et al. Robust Half-Metallic Magnetism in Two-Dimensional Fe/MoS2. J. Phys. Chem. C 122, 21617–21622 (2018).
  • 261. Golsanamlou, Z., Tagani, M. B. & Soleimani, H. R. Magnetothermoelectric Properties of Ferrocene-Based Compounds Sandwiched by Transition Metals in the Presence of Gold Electrodes. J. Phys. Chem. C 122, 22063–22072 (2018).
  • 262. Larson, A. M. et al. Lateral Standing of the Pentacene Derivative 5,6,7-Trithiapentacene-13-one on Gold: A Combined STM, DFT, and NC-AFM Study. J. Phys. Chem. C 122, 11938–11944 (2018).
  • 263. Liu, X., Tan, Y., Zhang, G. & Pei, Y. Electronic Structure and Spin Transport Properties of a New Class of Semiconductor Surface-Confined One-Dimensional Half-Metallic [Eu-(CnHn-2)]N (n = 7-9) Sandwich Compounds and Molecular Wires: First Principle Studies. J. Phys. Chem. C 122, 16168–16177 (2018).
  • 264. Tsuji, Y. & Yoshizawa, K. Adsorption and Activation of Methane on the (110) Surface of Rutile-type Metal Dioxides. J. Phys. Chem. C 122, 15359–15381 (2018).
  • 265. Zhou, Y. et al. Effects of Different Surface Functionalization and Doping on the Electronic Transport Properties of M2CT x-M2CO2 Heterojunction Devices. J. Phys. Chem. C 122, 14908–14917 (2018).
  • 266. Rosen, A. S., Notestein, J. M. & Snurr, R. Q. Comprehensive Phase Diagrams of MoS2 Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations. J. Phys. Chem. C 122, 15318–15329 (2018).
  • 267. Brisendine, J. M. et al. Probing Charge Transport through Peptide Bonds. J. Phys. Chem. Lett. 9, 763–767 (2018).
  • 268. Liang, Y., Li, J., Jin, H., Huang, B. & Dai, Y. Photoexcitation Dynamics in Janus-MoSSe/WSe2 Heterobilayers: Ab Initio Time-Domain Study. J. Phys. Chem. Lett. 9, 2797–2802 (2018).
  • 269. Koley, S., Sen, S. & Chakrabarti, S. Vanishing Thermal Conductance of Carbon Nanotube upon Encapsulation by Zigzag Sulfur Chain. J. Phys. Chem. Lett. 9, 3105–3109 (2018).
  • 270. Surthi, K. K., De, B., Ramkumar, J. & Kar, K. K. Enhancement of the surface reactivity of zigzag boron nitride nanoribbons by chlorine gas decoration: A computational study. J. Phys. Chem. Solids 120, 34–43 (2018).
  • 271. Mayengbam, R., Tripathy, S. K., Palai, G. & Dhar, S. S. First-principles study of phase transition, electronic, elastic and optical properties of defect chalcopyrite ZnGa2Te4 semiconductor under different pressures. J. Phys. Chem. Solids 119, 193–201 (2018).
  • 272. Min, Y., Zhong, C. G., Yang, P. P. & Yao, K. L. Low bias negative differential resistance in tour wires predicted by first-principles study. J. Phys. Chem. Solids 119, 238–241 (2018).
  • 273. Feizabadi, M., Ajloo, D., Soleymanpour, A. & Faridnouri, H. Study of electron transport in the functionalized nanotubes and their impact on the electron transfer in the active site of horseradish peroxidase. J. Phys. Chem. Solids 116, 313–323 (2018).
  • 274. Calogero, G., Papior, N. R., Boggild, P. & Brandbyge, M. Large-scale tight-binding simulations of quantum transport in ballistic graphene. J. Phys. Condens. Matter 30, (2018).
  • 275. Liu, Y. Y. et al. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. J. Phys. Condens. Matter 30, (2018).
  • 276. Davies, P. A. G. & Foulkes, W. M. C. A two-phase Hessian approach improves the DFT relaxation of slabs. J. Phys. Condens. Matter 30, (2018).
  • 277. Jia, C., Cao, L., Zhou, X., Zhou, B. & Zhou, G. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons. J. Phys. Condens. Matter 30, (2018).
  • 278. Greer, J. C., Blom, A. & Ansari, L. Properties of homo- and hetero-Schottky junctions from first principle calculations. J. Phys. Condens. Matter 30, (2018).
  • 279. Wakai, T., Sakamoto, S. & Tomiya, M. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling. J. Phys. Condens. Matter 30, (2018).
  • 280. Ren, Y., Liu, P., Cheng, F. & Zhou, G. Strain-induced effects in zigzag-edged blue phosphorene nanoribbons with edge sulfur passivation. J. Phys. Condens. Matter 30, (2018).
  • 281. Jovell, F. & Cartoixà, X. Electrical contact resistance in graphite-graphene contacts from ab initio methods. J. Phys. Condens. Matter 30, (2018).
  • 282. Yuan, P. F., Hu, R., Fan, Z. Q. & Zhang, Z. H. Phagraphene nanoribbons: Half-metallicity and magnetic phase transition by functional groups and electric field. J. Phys. Condens. Matter 30, (2018).
  • 283. Khan, M. A. & Leuenberger, M. N. Room-temperature superparamagnetism due to giant magnetic anisotropy in MoS defected single-layer MoS2. J. Phys. Condens. Matter 30, (2018).
  • 284. Liu, N., Zhu, L. & Yao, K. L. Thermoelectronic transport through spin-crossover single molecule Fe[(H 2 Bpz 2 ) 2 bipy]. J. Phys. D. Appl. Phys. 51, 145102 (2018).
  • 285. Yu, C. et al. Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J. Phys. D. Appl. Phys. 51, 345302 (2018).
  • 286. Fan, Z. Q., Chen, J. & Jiang, X. Electrical contacts and tunable rectifications in monolayer GeSe-metal junctions. J. Phys. D. Appl. Phys. 51, (2018).
  • 287. Liu, N., Zhu, L. & Yao, K. L. Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy]. J. Phys. D. Appl. Phys. 51, 145102 (2018).
  • 288. Zhang, X., Chen, Y. & Yang, Z. First principles study of the gas sensing 2D GeTe: Atomic, electronic and transport properties. J. Phys. D. Appl. Phys. 51, (2018).
  • 289. Cheng, J.-F. et al. Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules. J. Phys. Condens. Matter 30, 105301 (2018).
  • 290. Sergeyev, D. & Zhanturina, N. Computer simulation of electrical characteristics of singlewalled carbon nanotube (9,0) with Stone-Wales defect. J. Phys. Conf. Ser. 1015, 032124 (2018).
  • 291. Kaur, R. P. & Engles, D. Transport in a fullerene terminated aromatic molecular device. J. Sci. Adv. Mater. Devices 3, 206–212 (2018).
  • 292. Yildizhan, G., Caliskan, S. & Ozturk, R. Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and electronic properties. J. Solid State Chem. 260, 52–58 (2018).
  • 293. Kumar, A. & Choudhary, S. Enhanced Magnetoresistance in In-Plane Monolayer MoS2 with CrO2 Electrodes. J. Supercond. Nov. Magn. 31, 3245–3250 (2018).
  • 294. Singh, A. K., Choudhary, S. & Meena, S. Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration. J. Supercond. Nov. Magn. 31, 2753–2758 (2018).
  • 295. Singh, M. & Choudhary, S. Spin Transport Investigations in Bilayer Graphene. J. Supercond. Nov. Magn. 31, 75–79 (2018).
  • 296. Saini, M. & Choudhary, S. Understanding the Spin Transport in H2O-Adsorbed CNT-Based Magnetic Tunnel Junction. J. Supercond. Nov. Magn. 1–5 (2018). doi:10.1007/s10948-018-4783-8
  • 297. Zhang, H.-L. et al. Distinguishing Diketopyrrolopyrrole Isomers in Single-Molecule Junctions via Reversible Stimuli-Responsive Quantum Interference. J. Am. Chem. Soc. 140, 6531–6535 (2018).
  • 298. Li, H. et al. Large Variations in the Single-Molecule Conductance of Cyclic and Bicyclic Silanes. J. Am. Chem. Soc. 140, 15080–15088 (2018).
  • 299. De Izarra, A., Park, S., Lee, J., Lansac, Y. & Jang, Y. H. Ionic Liquid Designed for PEDOT:PSS Conductivity Enhancement. J. Am. Chem. Soc. 140, 5375–5384 (2018).
  • 300. Yang, J. et al. Influence of spatial distribution of molecule on the switching behavior: A first-principles study. J. Theor. Comput. Chem. 17, 1850038 (2018).
  • 301. Mohammadtabar, K., Eder, S. J., Bedolla, P. O., Dörr, N. & Martini, A. Reactive Molecular Dynamics Simulations of Thermal Film Growth from Di- tert-butyl Disulfide on an Fe(100) surface. Langmuir 34, 15681–15688 (2018).
  • 302. Dash, D., Chaudhury, S. & Tripathy, S. K. A Density Functional Theory-Based Study of Electronic and Optical Properties of Anatase Titanium Dioxide. in Lecture Notes in Electrical Engineering 462, 57–67 (2018).
  • 303. Bragato, M. et al. Magnetic moments and electron transport through chromium-based antiferromagnetic nanojunctions. Materials (Basel). 11, 2030 (2018).
  • 304. Sun, L. et al. Lithiation-induced interfacial failure of electrode-collector: A first-principles study. Mater. Chem. Phys. 222, 193–199 (2018).
  • 305. Bian, B. et al. Effect of the lateral linking groups on the switching behavior in single molecular device. Mater. Chem. Phys. 213, 140–145 (2018).
  • 306. Meena, S. & Choudhary, S. Effects of functionalization of carbon nanotubes on its spin transport properties. Mater. Chem. Phys. 217, 175–181 (2018).
  • 307. Bandyopadhyay, J. et al. Conductivity Modulation of SWCNT by Its Sidewall Functionalization Through Heavily Doping with DNA Nucleobase Adenine. Mater. Focus 7, 11–17 (2018).
  • 308. Parashar, S. Electron transport in dipyridazine and dipyridimine molecular junctions: A first-principles investigation. Mater. Res. Express 5, (2018).
  • 309. Pandey, S. C. Atomistic mechanisms of ReRAM cell operation and reliability. Mater. Res. Express 5, (2018).
  • 310. Yang, Z.-D., Pan, P., Hu, Y., Zhang, G. & Shang, Y. (Bz) n and (VBz) n covalent functionalized MoS 2 monolayer: electronic and transport properties . Mater. Res. Express 6, 046304 (2018).
  • 311. Kaur, S., Randhawa, D. K. K. & Narang, S. B. To investigate the relation between pore size and twist angle in enhanced thermoelectric efficient porous armchair graphene nanoribbons. Mater. Res. Express 5, (2018).
  • 312. Zhirnov, V. V., Pandey, S. C. & Sandhu, G. S. Physics insight and first-principles calculation of atomic conductance: Implications for the future interconnects. Mater. Res. Express 5, (2018).
  • 313. Rashid, M. H., Koel, A. & Rang, T. Simulations of Heterostructures Based on 3C-4H and 6H-4H Silicon Carbide Polytypes. Mater. Sci. Forum 924, 302–305 (2018).
  • 314. nejad, H. F. et al. Tuning the analog and digital performance of Germanene nanoribbon field effect transistors with engineering the width and geometry of source, channel and drain region in the ballistic regime. Mater. Sci. Semicond. Process. 80, 18–23 (2018).
  • 315. Sun, R. et al. A theoretical study on the metal contacts of monolayer gallium nitride (GaN). Mater. Sci. Semicond. Process. 84, 64–70 (2018).
  • 316. SanthiBhushan, B. et al. Dispersion and stability study of carbon nanotubes in pH and temperature responsive polymeric matrix: Experiment and dispersion-corrected DFT study. Mater. Today Commun. 17, 187–193 (2018).
  • 317. Harik, V. Mechanics of Carbon Nanotubes. Mech. Carbon Nanotub. 135–164 (2018). doi:10.1016/b978-0-12-811071-3.00006-8
  • 318. Jha, K. K., Jaiswal, N. K., Pattanaik, M. & Srivastava, P. First-principle investigations for electronic transport in nitrogen-doped disconnected zigzag graphene nanoribbons. Microelectron. Eng. 199, 96–100 (2018).
  • 319. Yuan, S. et al. Theoretical studies of the spin-dependent electronic transport properties in ethynyl-terminated ferrocene molecular junctions. Micromachines 9, 95 (2018).
  • 320. Carrillo-Nuñez, H. et al. Variability Predictions for the Next Technology Generations of n-type SixGe1−x Nanowire MOSFETs. Micromachines 9, 643 (2018).
  • 321. Biswas, K., Bandyopadhyay, J. & De, D. A computational study on the quantum transport properties of silicene–graphene nano-composites. Microsyst. Technol. 1–19 (2018). doi:10.1007/s00542-018-3726-4
  • 322. De, D., Sinha, S., Bandyopadhyay, J., Biswas, K. & Mukherjee, S. Conductivity modulation of interstitially chemisorbed Manganese atom on Graphene for nanoelectronic application. Microsyst. Technol. (2018). doi:10.1007/s00542-018-3912-4
  • 323. Sengupta, A. et al. Ab initio study of mono-layer 2-D insulators (X-(OH)2 and h-BN) and their use in MTJ memory device. Microsyst. Technol. 1–9 (2018). doi:10.1007/s00542-018-3728-2
  • 324. Dey, D. & De, D. A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure. Microsyst. Technol. 24, 3107–3121 (2018).
  • 325. Sinha, S. & Bandyopadhyay, J. Metal to semiconductor conversion by hydrogenation in guanine functionalized SWCNT. Microsyst. Technol. 1–12 (2018). doi:10.1007/s00542-018-3723-7
  • 326. Hu, W. et al. First-principles study on electron transport properties of carbon–silicon mixed chains. Mod. Phys. Lett. B 32, 1850025 (2018).
  • 327. Aliyev, Y. I. et al. Electronic structure and density of states in hexagonal BaMnO 3 . Mod. Phys. Lett. B 32, 1850186 (2018).
  • 328. Yuan, P., Bian, B., Han, X., Ding, Y. & Yang, J. Rectification in zigzag graphene/BN nanoribbon heterojunction. Mod. Phys. Lett. B 32, 1850395 (2018).
  • 329. Wan, H., Chen, X. & Zhou, G. Spin-dependent transport properties of a graphene electrode-single quintuple bond [PhCrCrPh] molecule junction. Mol. Phys. 117, 768–775 (2018).
  • 330. Pourasl, A. H., Ahmadi, M. T., Ismail, R. & Gharaei, N. Analytical modelling and simulation of gas adsorption effects on graphene nanoribbon electrical properties. Mol. Simul. 44, 551–557 (2018).
  • 331. Sergeyev, D. & Shunkeyev, K. Computer simulation of electrical characteristics of a nanocontact ‘Au-1.8-nonodiyne-Au’. Moscow Work. Electron. Netw. Technol. MWENT 2018 - Proc. 2018-March, 1–6 (2018).
  • 332. Dash, D., Pandey, C. K., Chaudhary, S. & Tripathy, S. K. Structural, electronic, and mechanical properties of anatase titanium dioxide: An ab-initio approach. Multidiscip. Model. Mater. Struct. 15, MMMS-03-2018-0043 (2018).
  • 333. Shityakov, S. et al. Investigation of Crystalline and Amorphous Forms of Aluminum and Its Alloys: Computational Modeling and Experiment. Nano 13, 1850026 (2018).
  • 334. Khan, I. et al. Single-step strategy for the fabrication of GaON/ZnO nanoarchitectured photoanode their experimental and computational photoelectrochemical water splitting. Nano Energy 44, 23–33 (2018).
  • 335. Vijaya Kumar Saroja, A. P., Muruganathan, M., Muthusamy, K., Mizuta, H. & Sundara, R. Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes. Nano Lett. 18, 5688–5696 (2018).
  • 336. Markussen, T., Brandbyge, M., Palsgaard, M., Gunst, T. & Thygesen, K. S. Stacked Janus Device Concepts: Abrupt pn-Junctions and Cross-Plane Channels. Nano Lett. 18, 7275–7281 (2018).
  • 337. Caridad, J. M. et al. A Graphene-Edge Ferroelectric Molecular Switch. Nano Lett. 18, 4675–4683 (2018).
  • 338. Özçelik, V. O., Gong, K. & White, C. E. Highly Surface-Active Ca(OH)2 Monolayer as a CO2 Capture Material. Nano Lett. 18, 1786–1793 (2018).
  • 339. Zheng, X. et al. Tuning Local Electrical Conductivity via Fine Atomic Scale Structures of Two-Dimensional Interfaces. Nano Lett. 18, 6030–6036 (2018).
  • 340. Yu, Y. et al. Phase-Controlled Growth of One-Dimensional Mo6Te6 Nanowires and Two-Dimensional MoTe2 Ultrathin Films Heterostructures. Nano Lett. 18, 675–681 (2018).
  • 341. Li, J. et al. Electrical contacts in monolayer blue phosphorene devices. Nano Res. 11, 1834–1849 (2018).
  • 342. Zhang, X. et al. Three-layer phosphorene-metal interfaces. Nano Res. 11, 707–721 (2018).
  • 343. Li, H. et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res. 11, 2658–2668 (2018).
  • 344. Cao, Y. et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 11, 6190–6196 (2018).
  • 345. Ye, Z. et al. Theoretical Study on Carrier Mobility of Hydrogenated Graphene / Hexagonal. Nano Res. Lett. 13, 0–7 (2018).
  • 346. Morris, J. E. Nanoelectronic Device Applications Handbook. Nanoelectron. Device Appl. Handb. (2018). doi:10.1201/b15035
  • 347. Huang, Y., Li, M., Yang, L. & Zhai, B. Eu2+ and Eu3+ Doubly Doped ZnWO4 Nanoplates with Superior Photocatalytic Performance for Dye Degradation. Nanomaterials 8, 765 (2018).
  • 348. Seo, F. J., Li, Q., Tabibi, B., Rice, Q. & Yu, S. Piezoelectricity in WSe 2 /MoS 2 heterostructure atomic layers . Nanoscale 10, 12472–12479 (2018).
  • 349. Jhon, Y. I., Seo, M. & Jhon, Y. M. First-principles study of a MXene terahertz detector. Nanoscale 10, 69–75 (2018).
  • 350. Zhou, W. et al. DFT coupled with NEGF study of a promising two-dimensional channel material: Black phosphorene-type GaTeCl. Nanoscale 10, 3350–3355 (2018).
  • 351. Appelt, W. H. et al. Predicting the conductance of strongly correlated molecules: The Kondo effect in perchlorotriphenylmethyl/Au junctions. Nanoscale 10, 17738–17750 (2018).
  • 352. Kladnik, G. et al. Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces. Nanoscale (2018). doi:10.1039/c7nr08737c
  • 353. Chang, J. Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures. Nanoscale 10, 13652–13660 (2018).
  • 354. Zheng, J. et al. Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP 2 Se 6 . Nanoscale (2018). doi:10.1039/c8nr04253e
  • 355. Peng, H. et al. High-performance sub-10 nm monolayer Bi 2 O 2 Se transistors . Nanoscale 11, 532–540 (2018).
  • 356. Pan, L. et al. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X = Br, I) monolayers. Nanoscale 10, 22196–22202 (2018).
  • 357. Wang, J. et al. An ultra-sensitive and selective nitrogen dioxide sensor based on a novel P2C2 monolayer from a theoretical perspective. Nanoscale 10, 21936–21943 (2018).
  • 358. Dou, K. P., Kaun, C. C. & Zhang, R. Q. Selective interface transparency in graphene nanoribbon based molecular junctions. Nanoscale 10, 4861–4864 (2018).
  • 359. Wu, M. et al. Proton transfer ferroelectricity/multiferroicity in rutile oxyhydroxides. Nanoscale 10, 9509–9515 (2018).
  • 360. Yang, J. et al. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale 10, 19492–19497 (2018).
  • 361. Yao, A. L., Wang, X. F., Liu, Y. S. & Sun, Y. N. Electronic Structure and I-V Characteristics of InSe Nanoribbons. Nanoscale Res. Lett. 13, 107 (2018).
  • 362. Yang, Z. et al. Effects of Intercalating Polysilanes into MoS 2 Interlaminar Spaces on Transport Property . Nanosci. Nanotechnol. Lett. 9, 1287–1297 (2018).
  • 363. Li, H. et al. Sub-5 nm monolayer black phosphorene tunneling transistors. Nanotechnology 29, 485202 (2018).
  • 364. Li, Y., Bai, H., Li, L. & Huang, Y. Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes. Nanotechnology 29, (2018).
  • 365. Tan, J., Zhang, X., Liu, W., He, X. & Zhao, M. Strain-induced tunable negative differential resistance in triangle graphene spirals. Nanotechnology 29, (2018).
  • 366. Kuang, W., Hu, R., Fan, Z. Q. & Zhang, Z. H. Spin-dependent carrier mobility and its gate-voltage modifying effects for functionalized single walled black phosphorus tubes. Nanotechnology 30, 145201 (2018).
  • 367. Chakrabarty, S., Wasey, A. H. M. A., Thapa, R. & Das, G. P. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: A potential spin filter. Nanotechnology 29, (2018).
  • 368. Zhu, L., Li, B. & Yao, K. Thermoelectric transport properties of Ti doped/adsorbed monolayer blue phosphorene. Nanotechnology 29, (2018).
  • 369. Mahdavifar, M. & Khoeini, F. Highly tunable charge and spin transport in silicene junctions: Phase transitions and half-metallic states. Nanotechnology 29, (2018).
  • 370. Sadeghi, H. Theory of electron, phonon and spin transport in nanoscale quantum devices. Nanotechnology 29, 1–30 (2018).
  • 371. Nemnes, G. A., Mitran, T. L. & Dragoman, D. Ballistic transport in graphene Y-junctions in transverse electric field. Nanotechnology 29, (2018).
  • 372. Aierken, Y., Sevik, C., Gülseren, O., Peeters, F. M. & Çakir, D. In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions. Nanotechnology 29, 295202 (2018).
  • 373. Kühne, M. et al. Reversible superdense ordering of lithium between two graphene sheets. Nature 564, 234–239 (2018).
  • 374. Nuckolls, C. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018).
  • 375. Gu, C. et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 9, (2018).
  • 376. Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).
  • 377. Zhang, G. et al. Transport and photogalvanic properties of covalent functionalized monolayer black phosphorus. New J. Chem. 43, 377–385 (2018).
  • 378. Löfgren, R., Pawar, R., Oberg, S. & Larsson, J. A. Charged dopants in neutral supercells through substitutional donor (acceptor): Nitrogen donor charging of the nitrogen-vacancy center in diamond. New J. Phys. 20, (2018).
  • 379. Xie, H., Gao, J. H. & Han, D. Excited spin density waves in zigzag graphene nanoribbons. New J. Phys. 20, (2018).
  • 380. Das, B. & Mahapatra, S. An atom-to-circuit modeling approach to all-2D metal–insulator–semiconductor field-effect transistors. npj 2D Mater. Appl. 2, 28 (2018).
  • 381. Wang, F., Yang, Z. & Song, R. Monolayer Rhenium disulphide contacts with Au, Ag, and Pt. Opt. Quantum Electron. 50, 241 (2018).
  • 382. Zhang, D., Long, M., Cui, L., Xiao, J. & Pan, C. Perfect spin-filtering and switching functions in zigzag silicene nanoribbons with hydrogen modification. Org. Electron. physics, Mater. Appl. 62, 253–260 (2018).
  • 383. Song, Y. et al. Azulene-like molecular devices with high spin filtering, strong spin rectifying, and giant magnetoresistance effects. Org. Electron. physics, Mater. Appl. 59, 113–120 (2018).
  • 384. Li, B. L., Feng, Y. & Chen, K. Q. Inelastic electronic resonant transport in single-molecule devices. Org. Electron. physics, Mater. Appl. 54, 89–93 (2018).
  • 385. Zeng, J., Chen, K. Q. & Long, M. The contaminant-induced instabilities of spin-transport properties in a MnPc-based spin valve. Org. Electron. physics, Mater. Appl. 58, 216–221 (2018).
  • 386. Anu, Srivastava, A. & Khan, M. S. First principle study of single electron transistor based on metal-organic complex of dibenzothiophene. Org. Electron. physics, Mater. Appl. 53, 227–234 (2018).
  • 387. Li, Y. H., Yuan, P. F., Fan, Z. Q. & Zhang, Z. H. Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom -terminations. Org. Electron. physics, Mater. Appl. 59, 306–313 (2018).
  • 388. Gil-Guerrero, S., Ramos-Berdullas, N. & Mandado, M. Can aromaticity enhance the electron transport in molecular wires? Org. Electron. physics, Mater. Appl. 61, 177–184 (2018).
  • 389. Wang, M. et al. Impact of interface types on spin transport in heterostructures of graphene/hexagonal boron-nitride nanoribbons. Org. Electron. physics, Mater. Appl. 58, 63–68 (2018).
  • 390. Farzadi, R. & Milani Moghaddam, H. Greatly enhanced spin filtering of single ferrocene devices: An ab initio study. Org. Electron. physics, Mater. Appl. 62, 227–233 (2018).
  • 391. Gao, X. J., Zhao, P. & Chen, G. Thermal spin-filtering, magnetoresistance effects and thermal spin logic gate in Mn-oligoporphyrin-based molecular device. Org. Electron. physics, Mater. Appl. 62, 277–283 (2018).
  • 392. Zhao, P., Gao, X. J., Song, Y., Li, X. X. & Chen, G. Spin-filtering, giant magnetoresistance, negative differential resistance effects and spin logic gate in P2TA-O2-based molecular junction with different transition metal atoms. Org. Electron. physics, Mater. Appl. 57, 104–109 (2018).
  • 393. Anu, Srivastava, A. & Khan, M. S. Charge stability diagram and addition energy spectrum for single-electron transistor based on Ni-dithiolene derivatives. Org. Electron. physics, Mater. Appl. 59, 125–130 (2018).
  • 394. Di, M. et al. The spin-dependent transport and optoelectronic properties of the 6,6,12-graphyne-based magnetic tunnel junction devices. Org. Electron. physics, Mater. Appl. 53, 1–13 (2018).
  • 395. Singh, S., Garg, K., Sareen, A., Mehla, R. & Kaur, I. Doped armchair germanene nanoribbon exhibiting negative differential resistance and analysing its nano-FET performance. Org. Electron. physics, Mater. Appl. 54, 261–269 (2018).
  • 396. Deng, Y. X. et al. Spin gapless semiconductor and half-metal properties in magnetic penta-hexa-graphene nanotubes. Org. Electron. physics, Mater. Appl. 63, 310–317 (2018).
  • 397. Kutlu, E., Narin, P., Lisesivdin, S. B. & Ozbay, E. Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms. Philos. Mag. 98, 155–164 (2018).
  • 398. Dec, B., Pyrchla, K. & Bogdanowicz, R. Ab-initio study of electrical and optical properties of allylamine. Photonics Lett. Pol. 10, 94–96 (2018).
  • 399. Dec, B. & Bogdanowicz, R. DFT studies of the refractive index of boron-doped diamond. Photonics Lett. Pol. 10, 39–41 (2018).
  • 400. He, J. J., Guo, Y. D., Yan, X. H. & Zeng, H. L. Electronic, magnetic and transport properties of transition metal-doped holely C2N-h2D nanoribbons. Phys. B Condens. Matter 528, 1–8 (2018).
  • 401. Lv, Y. Z., Zhao, P. & Liu, D. S. Spin-filtering, negative differential resistance, and giant magnetoresistance in (2 × 1) reconstructed zigzag MoS2 nanoribbons. Phys. B Condens. Matter 528, 9–13 (2018).
  • 402. Jaiswal, N. K. & Patel, C. Density functional insights of iodine interaction with graphene and its nanoribbon with zigzag edges. Phys. B Condens. Matter 545, 268–274 (2018).
  • 403. Mikaeilzadeh, L., Pirgholi, M. & Tavana, A. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations. Phys. C Supercond. its Appl. 548, 75–77 (2018).
  • 404. Sun, J., Zhang, Y., Leng, J. & Ma, H. The electronic and transport properties of borophane with defects: A first principles study. Phys. E Low-Dimensional Syst. Nanostructures 97, 170–176 (2018).
  • 405. Sako, T. & Ishida, H. Field induced transient current in one-dimensional nanostructure. Phys. E Low-Dimensional Syst. Nanostructures 101, 256–264 (2018).
  • 406. Yuan, P. et al. Effect of edge modification on the rectification in graphene ribbons device. Phys. E Low-Dimensional Syst. Nanostructures 95, 32–36 (2018).
  • 407. Deng, S., Li, L. & Li, M. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Phys. E Low-Dimensional Syst. Nanostructures 101, 44–49 (2018).
  • 408. Golsanamlou, Z., Bagheri Tagani, M. & Rahimpour Soleimani, H. Large thermoelectric efficiency of doped polythiophene junction: A density functional study. Phys. E Low-Dimensional Syst. Nanostructures 100, 31–39 (2018).
  • 409. Mu, Y.-Q. et al. Optimizing the conductance switching performance in photoswitchable dimethyldihydropyrene/cyclophanediene single-molecule junctions. Phys. E Low-dimensional Syst. Nanostructures 109, 1–5 (2018).
  • 410. Gao, R. Bin, Peng, X. F. & Chen, K. Q. Edge-oxidation effects on the thermoelectric properties in graphene nanoribbons. Phys. E Low-Dimensional Syst. Nanostructures 104, 302–308 (2018).
  • 411. Caliskan, S. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study. Phys. E Low-Dimensional Syst. Nanostructures 99, 43–50 (2018).
  • 412. Hu, G.-C. C. et al. Theoretical understanding of the inversion of rectification direction in ferrocenyl-embedded tridecanethiolate single-molecule rectifiers. Phys. E Low-dimensional Syst. Nanostructures 103, 397–402 (2018).
  • 413. Narin, P. et al. Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms. Phys. E Low-dimensional Syst. Nanostructures 104, 124–129 (2018).
  • 414. Hu, M. et al. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study. Phys. E Low-Dimensional Syst. Nanostructures 98, 60–65 (2018).
  • 415. Cheng, F. & He, B. Electronic properties of pentagonal CN2 nanoribbon under external electric field and tensile strain. Phys. E Low-Dimensional Syst. Nanostructures 104, 6–10 (2018).
  • 416. La Martina, T., Zhu, J. X., Balatsky, A. V. & Haraldsen, J. T. Dirac Nodes and Magnetic Order in M2X2 Transition-Metal Chalcogenides. Phys. Status Solidi - Rapid Res. Lett. 12, 1800181 (2018).
  • 417. Chen, J. et al. Monolayer–Trilayer Lateral Heterostructure Based Antimonene Field Effect Transistor: Better Contact and High On/Off Ratios. Phys. Status Solidi - Rapid Res. Lett. 12, 1800038 (2018).
  • 418. Zeng, J. & Chen, K. Q. A nearly perfect spin filter and a spin logic gate based on a porphyrin/graphene hybrid material. Phys. Chem. Chem. Phys. 20, 3997–4004 (2018).
  • 419. Samanta, P. N. & Leszczynski, J. High-temperature thermoelectric transport behavior of the Al/γ-Al2O3 interface: Impact of electron and phonon scattering at nanoscale metal-ceramic contacts. Phys. Chem. Chem. Phys. 20, 14513–14524 (2018).
  • 420. Carmel, S., Pon, A., Meenakshisundaram, N., Ramesh, R. & Bhattacharyya, A. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs). Phys. Chem. Chem. Phys. 20, 14855–14863 (2018).
  • 421. Panahi, S. F. K. S., Namiranian, A., Soleimani, M. & Jamaati, M. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: Density functional theory combined with the nonequilibrium Green’s function. Phys. Chem. Chem. Phys. 20, 4160–4166 (2018).
  • 422. Zhu, S. C. et al. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys. 20, 21105–21112 (2018).
  • 423. Zhang, L., Wu, C., Ding, X., Fang, Y. & Sun, J. Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Phys. Chem. Chem. Phys. 20, 18192–18199 (2018).
  • 424. Du, L. et al. Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: A DFT + NEGF study. Phys. Chem. Chem. Phys. 20, 28777–28785 (2018).
  • 425. Jiang, Y. et al. A computational study on a multimode spin conductance switching by coordination isomerization in organometallic single-molecule junctions. Phys. Chem. Chem. Phys. 20, 20280–20286 (2018).
  • 426. Wang, N. et al. Electron transport behavior of quinoidal heteroacene-based junctions: effective electron-transport pathways and quantum interference. Phys. Chem. Chem. Phys. 20, 28860–28870 (2018).
  • 427. An, Y. et al. How does the electric current propagate through fully-hydrogenated borophene? Phys. Chem. Chem. Phys. 20, 21552–21556 (2018).
  • 428. Shi, B. et al. N-Type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Phys. Chem. Chem. Phys. 20, 24641–24651 (2018).
  • 429. Izadi Vishkayi, S. & Bagheri Tagani, M. Freestanding χ3-borophene nanoribbons: A density functional theory investigation. Phys. Chem. Chem. Phys. 20, 10493–10501 (2018).
  • 430. Ray, S. J. & Venkata Kamalakar, M. Unconventional strain-dependent conductance oscillations in pristine phosphorene. Phys. Chem. Chem. Phys. 20, 13508–13516 (2018).
  • 431. Guo, Y. D. et al. A progressive metal-semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides. Phys. Chem. Chem. Phys. 20, 21113–21118 (2018).
  • 432. Liu, N., Zhou, S., Gao, N. & Zhao, J. Tuning Schottky barriers for monolayer GaSe FETs by exploiting a weak Fermi level pinning effect. Phys. Chem. Chem. Phys. 20, 21732–21738 (2018).
  • 433. Li, J., Duan, Y., Li, T. & Li, H. Extreme electron transport suppression in siloxane ring-based molecular devices. Phys. Chem. Chem. Phys. 20, 23352–23362 (2018).
  • 434. Shukla, V., Grigoriev, A., Jena, N. K. & Ahuja, R. Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets. Phys. Chem. Chem. Phys. 20, 22952–22960 (2018).
  • 435. Lebedev, N., Griva, I., Blom, A. & Tender, L. M. Effect of iron doping on protein molecular conductance. Phys. Chem. Chem. Phys. 20, 14072–14081 (2018).
  • 436. Zou, D., Zhao, W., Cui, B., Li, D. & Liu, D. Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor. Phys. Chem. Chem. Phys. 20, 2048–2056 (2018).
  • 437. Guo, Y. D., Liu, H. F., Zeng, H. L., Yan, X. H. & Song, X. C. Edge defect switched dual spin filter in zigzag hexagonal boron nitride nanoribbons. Phys. Chem. Chem. Phys. 20, 9241–9247 (2018).
  • 438. Hu, R., Wang, D., Fan, Z. Q. & Zhang, Z. H. Structural and magneto-electronic properties of transition metal doped phosphorus nanotubes. Phys. Chem. Chem. Phys. 20, 13574–13579 (2018).
  • 439. Li, J. et al. First principles study of electronic transport properties in novel FeB2 flake-based nanodevices. Phys. Chem. Chem. Phys. 20, 4455–4465 (2018).
  • 440. Lu, J. et al. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects. Phys. Chem. Chem. Phys. 20, 5699–5707 (2018).
  • 441. Arasu, N. P. & Vázquez, H. Direct Au-C contacts based on biphenylene for single molecule circuits. Phys. Chem. Chem. Phys. 20, 10378–10383 (2018).
  • 442. Wu, K.-M. et al. Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations. Phys. Chem. Chem. Phys. (2018). doi:10.1039/c7cp08635k
  • 443. Li, Q. et al. Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Phys. Chem. Chem. Phys. 20, 5726–5733 (2018).
  • 444. Palsgaard, M., Markussen, T., Gunst, T., Brandbyge, M. & Stokbro, K. Efficient First-Principles Calculation of Phonon-Assisted Photocurrent in Large-Scale Solar-Cell Devices. Phys. Rev. Appl. 10, 014026 (2018).
  • 445. Partovi-Azar, P., Panahian Jand, S. & Kaghazchi, P. Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations. Phys. Rev. Appl. 9, 014012 (2018).
  • 446. Vaidya, D., Lodha, S. & Ganguly, S. Electrical-equivalent van der Waals gap for 2D bilayers. Phys. Rev. Appl. 10, 1 (2018).
  • 447. Xia, C. et al. Effects of Electric Field on the Electronic Structures of Broken-gap Phosphorene/ SnX2 (X = S, Se) van der Waals Heterojunctions. Phys. Rev. Appl. 10, 054064 (2018).
  • 448. Quhe, R. et al. Simulations of Quantum Transport in Sub-5-nm Monolayer Phosphorene Transistors. Phys. Rev. Appl. 10, 024022 (2018).
  • 449. Xia, C. et al. Enhanced Carrier Concentration and Electronic Transport by Inserting Graphene into van der Waals Heterostructures of Transition-Metal Dichalcogenides. Phys. Rev. Appl. 10, 024028 (2018).
  • 450. Kretz, B., Pedersen, C. S., Stradi, D., Brandbyge, M. & Garcia-Lekue, A. Atomistic Insight into the Formation of Metal-Graphene One-Dimensional Contacts. Phys. Rev. Appl. 10, 024016 (2018).
  • 451. Husain, S. et al. Spin pumping in the Heusler alloy C o2FeAl/Mo S2 heterostructure: Ferromagnetic resonance experiment and theory. Phys. Rev. B 98, 180404 (2018).
  • 452. Linhart, L., Burgdörfer, J. & Libisch, F. Accurate modeling of defects in graphene transport calculations. Phys. Rev. B 97, 035430 (2018).
  • 453. Salemi, L., Lherbier, A. & Charlier, J. C. Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects. Phys. Rev. B 98, 214204 (2018).
  • 454. Perera, D. & Rohrer, J. Structure sensitivity of electronic transport across graphene grain boundaries. Phys. Rev. B 94, 155432 (2018).
  • 455. Ishida, H. Bulk versus surface contributions to the Rashba spin splitting of Shockley surface states. Phys. Rev. B 98, 205412 (2018).
  • 456. Chacon, C. et al. Experimental and theoretical investigations of magnetic anisotropy and magnetic hardening at molecule/ferromagnet interfaces. Phys. Rev. B 98, 085432 (2018).
  • 457. Manuel, I. et al. Magnetic impurity bands in Ga x − 1 Mn x S : Towards understanding the anomalous spin-glass transition . Phys. Rev. B 98, 155206 (2018).
  • 458. Zauchner, M. G., Horsfield, A. P. & Todorov, T. N. Efficient electron open boundaries for simulating electrochemical cells. Phys. Rev. B 97, 045116 (2018).
  • 459. Lee, C. C., Lee, Y. T., Fukuda, M. & Ozaki, T. Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic orbitals: Anomalous Hall conductivity in bcc Fe. Phys. Rev. B 98, 115115 (2018).
  • 460. Iwase, S. et al. Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations. Phys. Rev. B 97, 195449 (2018).
  • 461. Tsukamoto, S., Ono, T. & Blügel, S. Improvement of accuracy in the wave-function-matching method for transport calculations. Phys. Rev. B 97, 115450 (2018).
  • 462. Nourbakhsh, Z. & Asgari, R. Phosphorene as a nanoelectromechanical material. Phys. Rev. B 98, 125427 (2018).
  • 463. Erdmanis, J., Lukács, Á. & Nazarov, Y. V. Weyl disks: Theoretical prediction. Phys. Rev. B 98, 241105 (2018).
  • 464. Ishida, H. & Liebsch, A. Fermi arc engineering at the interface between two Weyl semimetals. Phys. Rev. B 98, 195426 (2018).
  • 465. Zhou, T. & Gall, D. Resistivity scaling due to electron surface scattering in thin metal layers. Phys. Rev. B 97, 165406 (2018).
  • 466. He, Y. et al. Tuning the electronic transport anisotropy in α -phase phosphorene through superlattice design. Phys. Rev. B 97, 085119 (2018).
  • 467. Peters, L., Sasloglu, E., Mertig, I. & Katsnelson, M. I. Ab initio study of the Coulomb interaction in NbxCo clusters: Strong on-site versus weak nonlocal screening. Phys. Rev. B 97, 045121 (2018).
  • 468. Guo, Y.-D. et al. Multiple spin-resolved negative differential resistance and electrically controlled spin-polarization in transition metal-doped [6]cycloparaphenylenes. Phys. Lett. A 382, 2763–2768 (2018).
  • 469. Fu, H. Y. et al. Doping-induced giant rectification and negative differential conductance (NDC) behaviors in zigzag graphene nano-ribbon junction. Phys. Lett. Sect. A Gen. At. Solid State Phys. (2018). doi:10.1016/j.physleta.2018.12.001
  • 470. Zhang, S. et al. Study on the electronic structures and transport properties of the polyporphyrin nanoribbons with different edge configurations. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 2769–2775 (2018).
  • 471. Li, X. et al. Tuning spin-filtering, rectifying, and negative differential resistance by hydrogenation on topological edge defects of zigzag silicene nanoribbons. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 2475–2483 (2018).
  • 472. Zhao, W., Zou, D., Sun, Z., Yu, Y. & Yang, C. Controlling spin off state by gas molecules adsorption on metal-phthalocyanine molecular junctions and its possibility of gas sensor. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 2666–2672 (2018).
  • 473. Monshi, M. M., Aghaei, S. M. & Calizo, I. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 1171–1175 (2018).
  • 474. Mehdi Aghaei, S., Monshi, M. M., Torres, I., Banakermani, M. & Calizo, I. Lithium-functionalized germanene: A promising media for CO2 capture. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 334–338 (2018).
  • 475. Li, D. et al. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 1401–1408 (2018).
  • 476. Zhang, J., Xu, B. & Qin, Z. Spin-polarized transport properties of a pyridinium-based molecular spintronics device. Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 1226–1230 (2018).
  • 477. Vohra, R. & Sawhney, R. S. Envisaging quantum transport phenomenon in a muddled base pair of DNA. Pramana - J. Phys. 90, 58 (2018).
  • 478. Nasri, A., Boubaker, A., Khaldi, W., Hafsi, B. & Kalboussi, A. Transport propreties of organic single electron transistor; Dependence on acene length. Proc. - 2017 Int. Conf. Eng. MIS, ICEMIS 2017 2018-Janua, 1–7 (2018).
  • 479. Chakravarty, R., Saha, D. & Mahapatra, S. New asymmetric atomistic model for the analysis of phase-engineered MoS2-gold top contact. Proc. IEEE Int. Conf. VLSI Des. 2018-Janua, 139–142 (2018).
  • 480. Arafune, R. et al. Inelastic electron tunneling spectroscopy by STM of phonons at solid surfaces and interfaces. Prog. Surf. Sci. 93, 131–145 (2018).
  • 481. Bourgeois, C. et al. Room-temperature superconductivity and quantum physics. Quantum Stud. Math. Found. 5, 1–3 (2018).
  • 482. Zhang, L., Li, T., Jiang, Y., Arandiyan, H. & Li, H. ‘Y’-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons. RSC Adv. 8, 35050–35055 (2018).
  • 483. Ban, C., Li, L. & Wei, L. Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film. RSC Adv. 8, 29141–29146 (2018).
  • 484. Deng, X. Q. & Sheng, R. Q. Electronic and thermal spin effect of molecular nanowires between graphene electrodes. RSC Adv. 8, 34182–34191 (2018).
  • 485. Boutahir, M. et al. Electronic Properties of Phosphorene Nanoribbons. RSC Adv. 8, 16–18 (2018).
  • 486. Sun, C. et al. Tunable transport and optoelectronic properties of monolayer black phosphorus by grafting PdCl2 quantum dots. RSC Adv. 8, 35226–35236 (2018).
  • 487. Azizi, M. & Ghavami, B. Charge transport in germanium doped phosphorene nanoribbons. RSC Adv. 8, 19479–19485 (2018).
  • 488. Yan, P. et al. Epitaxial growth and interfacial property of monolayer MoS2on gallium nitride. RSC Adv. 8, 33193–33197 (2018).
  • 489. Su, S., Gong, J. & Fan, Z. Q. Tunnable rectifying performance of in-plane metal-semiconductor junctions based on passivated zigzag phosphorene nanoribbons. RSC Adv. 8, 31255–31260 (2018).
  • 490. Zhu, Z., Chen, C., Liu, J. & Han, L. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene. Russ. J. Phys. Chem. A 92, 132–139 (2018).
  • 491. Sergeyev, D. M. M. & Shunkeyev, K. S. S. Investigation of Transport Parameters of Graphene-Based Nanostructures. Russ. Phys. J. 60, 1938–1945 (2018).
  • 492. Huang, L. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science (80-. ). 359, 1131–1136 (2018).
  • 493. Valenzuela, S. O. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science (80-. ). 360, 199–203 (2018).
  • 494. Yamawaki, M., Ohnishi, M., Ju, S. & Shiomi, J. Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Sci. Adv. 4, (2018).
  • 495. Zhang, D. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).
  • 496. Cheng, N. et al. Two-dimensional phosphorene/C3N p-n heterostructure: Effect of contact type on electronic and optical properties. Sci. China Technol. Sci. (2018). doi:10.1007/s11431-018-9355-0
  • 497. Brahma, M., Kabiraj, A., Saha, D. & Mahapatra, S. Scalability assessment of Group-IV mono-chalcogenide based tunnel FET. Sci. Rep. 8, (2018).
  • 498. Ren, Y., Cheng, F., Zhang, Z. H. & Zhou, G. Half metal phase in the zigzag phosphorene nanoribbon. Sci. Rep. 8, (2018).
  • 499. Jin, W. et al. High Sensitivity and Selectivity of AsP Sensor in Detecting SF6Decomposition Gases. Sci. Rep. 8, (2018).
  • 500. Yun, S. J. et al. Observation of negative differential resistance in mesoscopic graphene oxide devices. Sci. Rep. 8, (2018).
  • 501. Lunt, A. J. G., Chater, P. & Korsunsky, A. M. On the origins of strain inhomogeneity in amorphous materials. Sci. Rep. 8, (2018).
  • 502. Thong, A. Z., Shaffer, M. S. P. & Horsfield, A. P. Rectification and negative differential resistance via orbital level pinning. Sci. Rep. 8, (2018).
  • 503. Sugita, Y., Taninaka, A., Yoshida, S., Takeuchi, O. & Shigekawa, H. The effect of nitrogen lone-pair interaction on the conduction in a single-molecule junction with amine-Au bonding. Sci. Rep. 8, (2018).
  • 504. Bhuyan, P. D. et al. Si and Ge based metallic core/shell nanowires for nano-electronic device applications. Sci. Rep. 8, (2018).
  • 505. Baranava, M. S., Orudzhev, G. S., Jafarova, V. N., Stempitsky, V. R. & Huseynova, S. S. Magnetic Properties of Vacancies and Doped Chromium in a ZnO Crystal. Semiconductors 52, 1047–1050 (2018).
  • 506. Vohra, R. & Sawhney, R. S. First Principle Analysis of Biomarker for Lead Concentration. Sens. Lett. 15, 924–927 (2018).
  • 507. Tit, N., Othman, W., Shaheen, A. & Ali, M. Sensors and Actuators B : Chemical High selectivity of N-doped ZnO nano-ribbons in detecting H 2 , O 2 and CO 2 molecules : Effect of negative-differential resistance on. Sensors Actuators B. Chem. 270, 167–178 (2018).
  • 508. Tit, N., Othman, W., Shaheen, A. & Ali, M. High selectivity of N-doped ZnO nano-ribbons in detecting H2, O2 and CO2 molecules: Effect of negative-differential resistance on gas-sensing. Sensors Actuators, B Chem. 270, 167–178 (2018).
  • 509. Narendar, V., Gupta, S. K. & Saxena, S. First Principle Study of Doped Graphene for FET Applications. Silicon 11, 1–10 (2018).
  • 510. Jian, C., Cai, Q., Hong, W., Li, J. & Liu, W. Edge-Riched MoSe2/MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction. Small 14, 1703798 (2018).
  • 511. Huang, J. et al. Seed-layer-free growth of ultra-thin Ag transparent conductive films imparts flexibility to polymer solar cells. Sol. Energy Mater. Sol. Cells 184, 73–81 (2018).
  • 512. Srivastava, A., Khan, M. S. & Ahuja, R. Electron transport in NH3/NO2 sensed buckled antimonene. Solid State Commun. 272, 1–7 (2018).
  • 513. He, J.-J., Yan, X.-H., Ni, Y., Guo, Y.-D. & Zeng, H.-L. Edge modification induced giant rectification effect in armchair C2N-h2D nanoribbons. Solid State Commun. 289, 61–66 (2018).
  • 514. Lee, J. H., Jeong, W. J., Seo, J. & Shin, M. Wigner transport simulation of (core gate) silicon-shell nanowire transistors in cylindrical coordinates. Solid. State. Electron. 139, 101–108 (2018).
  • 515. Razavi, P. & Greer, J. C. Effect of strain and diameter on electronic and charge transport properties of indium arsenide nanowires. Solid. State. Electron. 149, 6–14 (2018).
  • 516. Isfahani, F., Ajloo, D., Kanaani, A. & Saboury, A. A. Photoconversion of an anthraquinone derivative in the presence of human serum albumin. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 205, 298–311 (2018).
  • 517. Walia, G. K. & Randhawa, D. K. K. Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution. Struct. Chem. 29, 1893–1902 (2018).
  • 518. Walia, G. K. & Randhawa, D. K. K. Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study. Struct. Chem. 29, 257–265 (2018).
  • 519. Zhao, X. et al. Modulating electronic and magnetic properties of monolayer ZrSe2 by doping. Superlattices Microstruct. 120, 659–669 (2018).
  • 520. Sakhraoui, T., Said, M. & Alouani, M. Calculated tunneling magnetoresistance ratio of FeRh/MgO/FeRh (001) magnetic tunnel junction. Superlattices Microstruct. 122, 235–242 (2018).
  • 521. Bayani, A. H., Voves, J. & Dideban, D. Effective mass approximation versus full atomistic model to calculate the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET). Superlattices Microstruct. 113, 769–776 (2018).
  • 522. Divya Bharathi, N. & Sivasankaran, K. Influence of metal contact on the performance enhancement of monolayer MoS2 transistor. Superlattices Microstruct. 120, 479–486 (2018).
  • 523. Zhang, H. et al. Electronic and magnetic properties of MoSe2armchair nanoribbons controlled by the different edge structures. Superlattices Microstruct. 115, 30–39 (2018).
  • 524. Walia, G. K. & Randhawa, D. K. K. First-principles investigation on defect-induced silicene nanoribbons — A superior media for sensing NH3 NO2 and NO gas molecules. Surf. Sci. 670, 33–43 (2018).
  • 525. García-Fernández, C. & Lorente, N. Tunneling electronic currents simulated with localized basis sets. Surf. Sci. 678, 201–205 (2018).
  • 526. Okuyama, H., So, H., Hatta, S., Frederiksen, T. & Aruga, T. Effect of adsorbates on single-molecule junction conductance. Surf. Sci. 678, 169–176 (2018).
  • 527. Matsuura, Y. Tunnel magnetoresistance in polyaniline. Synth. Met. 243, 90–96 (2018).
  • 528. Park, Y. et al. Dopant diffusion in Si, SiGe and Ge: TCAD model parameters determined with density functional theory. Tech. Dig. - Int. Electron Devices Meet. IEDM 35.3.1-35.3.4 (2018). doi:10.1109/IEDM.2017.8268500
  • 529. Selmi, L. et al. Modelling nanoscale n-MOSFETs with III-V compound semiconductor channels: From advanced models for band structures, electrostatics and transport to TCAD. Tech. Dig. - Int. Electron Devices Meet. IEDM 13.4.1-13.4.4 (2018). doi:10.1109/IEDM.2017.8268384
  • 530. Herrera, M., Zawadzki, K. & D’Amico, I. Melting a Hubbard dimer: benchmarks of `ALDA’ for quantum thermodynamics. Eur. Phys. J. B 91, 248 (2018).
  • 531. Mayengbam, R., Tripathy, S. K. & Palai, G. First-Principle Insights of Electronic and Optical Properties of Cubic Organic–Inorganic MAGe x Pb (1– x ) I 3 Perovskites for Photovoltaic Applications. J. Phys. Chem. C 122, 28245–28255 (2018).
  • 532. Rodriguez-Gonzalez, S. et al. HOMO Level Pinning in Molecular Junctions: Joint Theoretical and Experimental Evidence. J. Phys. Chem. Lett. 9, 2394–2403 (2018).
  • 533. Yang, J., Han, X. & Bian, B. Electronic transport induced by edge modification of graphene electrodes in single molecular device. Theor. Chem. Acc. 137, 178 (2018).
  • 534. Yuan, P., Bian, B., Han, X., Liao, B. & Yang, J. Effects of different electrodes and substituent groups on molecular switching. Theor. Chem. Acc. 137, 77 (2018).
  • 535. Tsai, C. E., Lu, F. L., Chen, P. S. & Liu, C. W. Boron-doping induced Sn loss in GeSn alloys grown by chemical vapor deposition. Thin Solid Films 660, 263–266 (2018).
  • 536. Linscott, E. B., Edgcombe, C. J., Barnes, C. H. W., Whaley-Baldwin, J. A. J. & Masur, S. M. Analysis of a capped carbon nanotube by linear-scaling density-functional theory. Ultramicroscopy 198, 26–32 (2018).
  • 537. Mejia, D., Kubis, T. & Klimeck, G. NemoViz: a visual interactive system for atomistic simulations design. Vis. Eng. 6, 6 (2018).
atk/2018_年使用_quantumatk_发表的文章.txt · 最后更改: 2019/05/03 15:21 由 dong.dong

© 2014-2020 费米科技(京ICP备14023855号